Skip to main content
Log in

Wave-breaking and persistence properties in weighted \(L^p\) spaces for a Camassa–Holm type equation with quadratic and cubic nonlinearities

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem of a Camassa–Holm type equation with quadratic and cubic nonlinearities. We establish a new sufficient condition on the initial data that leads to the wave-breaking for this equation. Moreover, we obtain the persistence results of solutions for the equation in weighted \(L^p\) spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandolese, L.: Breakdown for the Camassa–Holm equation using decay criteria and persistence in weighted spaces. Int. Math. Res. Not. 2012, 5161–5181 (2012)

    Article  MathSciNet  Google Scholar 

  2. Brandolese, L.: Local-in-space criteria for blowup in shallow water and dispersive rod equations. Commun. Math. Phys. 330, 401–414 (2014)

    Article  MathSciNet  Google Scholar 

  3. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  4. Chen, A.Y., Lu, X.H.: Orbital stability of elliptic periodic peakons for the modified Camassa–Holm equation. Discrete Contin. Dyn. Syst. 40, 1703–1735 (2020)

    Article  MathSciNet  Google Scholar 

  5. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  6. Constantin, A.: On the blow-up of solutions of a periodic shallow water equation. J. Nonlinear Sci. 10, 391–399 (2000)

    Article  MathSciNet  Google Scholar 

  7. Constantin, A.: Finite propagation speed for the Camassa–Holm equation. J. Math. Phys. 46, 023506 (2005)

    Article  MathSciNet  Google Scholar 

  8. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 26, 303–328 (1998)

    MathSciNet  Google Scholar 

  9. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  10. Constantin, A., Escher, J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51, 475–504 (1998)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    Article  MathSciNet  Google Scholar 

  12. Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A., Kolev, B.: Integrability of invariant metrics on the diffeomorphism group of the circle. J. Nonlinear Sci. 16, 109–122 (2006)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A., Strauss, W.A.: Stability of a class of solitary waves in compressible elastic rods. Phys. Lett. A 270, 140–148 (2000)

    Article  MathSciNet  Google Scholar 

  15. Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech. 127, 193–207 (1998)

    Article  MathSciNet  Google Scholar 

  16. Darós, A., Arruda, L.K.: On the instability of elliptic traveling wave solutions of the modified Camassa–Holm equation. J. Differ. Equ. 266, 1946–1968 (2019)

    Article  MathSciNet  Google Scholar 

  17. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Physica D 95, 229–243 (1996)

    Article  MathSciNet  Google Scholar 

  18. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  Google Scholar 

  19. Henry, D.: Persistence properties for a family of nonlinear partial differential equations. Nonlinear Anal. 70, 1565–1573 (2009)

    Article  MathSciNet  Google Scholar 

  20. Himonas, A.A., Misiołek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of the Camassa–Holm equation. Commun. Math. Phys. 271, 511–522 (2007)

    Article  MathSciNet  Google Scholar 

  21. Ji, S.G., Zhou, Y.H.: Global solutions for the modified Camassa–Holm equation. Z. Angew. Math. Mech. 102, e202100567 (2022)

    Article  MathSciNet  Google Scholar 

  22. Kolev, B.: Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations. Philos. Trans. R. Soc. A 365, 2333–2357 (2007)

    Article  MathSciNet  Google Scholar 

  23. Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–868 (1999)

    Article  MathSciNet  Google Scholar 

  24. Martins, R.H., Natali, F.: A comment about the paper “On the instability of elliptic traveling wave solutions of the modified Camassa–Holm equation’’. J. Differ. Equ. 269, 4598–4608 (2020)

    Article  MathSciNet  Google Scholar 

  25. McKean, H.P.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. 57, 416–418 (2004)

    Article  MathSciNet  Google Scholar 

  26. Ni, L.D., Zhou, Y.: A new asymptotic behavior of solutions to the Camassa–Holm equation. Proc. Am. Math. Soc. 140, 607–614 (2012)

    Article  MathSciNet  Google Scholar 

  27. Wei, L., Wang, Y., Zhang, H.Y.: Breaking waves and persistence property for a two-component Camassa–Holm system. J. Math. Anal. Appl. 445, 1084–1096 (2017)

    Article  MathSciNet  Google Scholar 

  28. Wu, X.L., Guo, B.L.: The Cauchy problem of the modified CH and DP equations. IMA J. Appl. Math. 80, 906–930 (2015)

    Article  MathSciNet  Google Scholar 

  29. Yin, J.L., Tian, L.X., Fan, X.H.: Stability of negative solitary waves for an integrable modified Camassa–Holm equation. J. Math. Phys. 51, 053515 (2010)

    Article  MathSciNet  Google Scholar 

  30. Yin, Z.Y.: On the blow-up scenario for the generalized Camassa–Holm equation. Commun. Partial Differ. Equ. 29, 867–877 (2004)

    Article  MathSciNet  Google Scholar 

  31. Yin, Z.Y.: Well-posedness and blow-up phenomena for the periodic generalized Camassa–Holm equation. Commun. Pure Appl. Anal. 3, 501–508 (2004)

    Article  MathSciNet  Google Scholar 

  32. Yin, Z.Y.: On the Cauchy problem for the generalized Camassa–Holm equation. Nonlinear Anal. 66, 460–471 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Cheng is partially supported by the National Natural Science Foundation of China (Nos. 12201417 and 12381240294), and the Project funded by China Postdoctoral Science Foundation (No. 2023M733173). The work of Lin is partially supported by the National Natural Science Foundation of China (No. 12375006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Lin.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Lin, J. Wave-breaking and persistence properties in weighted \(L^p\) spaces for a Camassa–Holm type equation with quadratic and cubic nonlinearities. Monatsh Math (2024). https://doi.org/10.1007/s00605-023-01938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00605-023-01938-8

Keywords

Mathematics Subject Classification

Navigation