Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter January 25, 2024

Evolving frontiers: endovascular strategies for the treatment of delayed cerebral ischemia

  • David-Dimitris Chlorogiannis ORCID logo EMAIL logo , Athina-Maria Aloizou , Theodoros Mavridis , Jonathan Andreas Sänger , Anargyros Chlorogiannis , Nikolaos Madouros ORCID logo and Panagiotis Papanagiotou

Abstract

Cerebral vasospasm and delayed cerebral ischemia represent a very challenging aspect of cerebrovascular pathophysiology, most commonly subarachnoid hemorrhage, with significantly high mortality if left untreated. Considerable advances have been made in medical treatment and prompt diagnosis, while newer endovascular modalities have recently been proposed for cases of resistant cerebral vasospasm. However, there is still paucity of data regarding which and whether a single endovascular technique is non inferior to the pharmacological standard of care. In this review, we aim to summarize the current funds of knowledge concerning cerebral vasospasm and the emerging role of the endovascular techniques for its treatment.


Corresponding author: David-Dimitris Chlorogiannis, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; and Society of Junior Doctors, 15123 Athens, Greece, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

Adami, D., Berkefeld, J., Platz, J., Konczalla, J., Pfeilschifter, W., Weidauer, S., and Wagner, M. (2019). Complication rate of intraarterial treatment of severe cerebral vasospasm after subarachnoid hemorrhage with nimodipine and percutaneous transluminal balloon angioplasty: worth the risk? J. Neuroradiol. 46: 15–24, https://doi.org/10.1016/jneurad.2018.04.001.Search in Google Scholar

Athar, M.K. and Levine, J.M. (2012). Treatment options for cerebral vasospasm in aneurysmal subarachnoid hemorrhage. Neurotherapeutics 9: 37–43, https://doi.org/10.1007/s13311-011-0098-1.Search in Google Scholar PubMed PubMed Central

Bauer, A.M. and Rasmussen, P.A. (2014). Treatment of intracranial vasospasm following subarachnoid hemorrhage. Front. Neurol. 5: 72, https://doi.org/10.3389/fneur.2014.00072.Search in Google Scholar PubMed PubMed Central

Boulouis, G., Labeyrie, M.A., Raymond, J., Rodriguez-Regent, C., Lukaszewicz, A.C., Bresson, D., Ben Hassen, W., Trystram, D., Meder, J.F., Oppenheim, C., et al.. (2017). Treatment of cerebral vasospasm following aneurysmal subarachnoid haemorrhage: a systematic review and meta-analysis. Eur. Radiol. 27: 3333–3342, https://doi.org/10.1007/s00330-016-4702-y.Search in Google Scholar PubMed

Brami, J., Chousterman, B., Boulouis, G., Dorze, M.L., Majlath, M., Saint-Maurice, J.P., Civelli, V., Froelich, S., Houdart, E., and Labeyrie, M.A. (2020). Delayed cerebral infarction is systematically associated with a cerebral vasospasm of large intracranial arteries. Neurosurgery 86: E175–E183, https://doi.org/10.1093/neuros/nyz340.Search in Google Scholar PubMed

Chalet, F.X., Briasoulis, O., Manalastas, E.J., Talbot, D.A., Thompson, J.C., and Macdonald, R.L. (2023). Clinical burden of angiographic vasospasm and its complications after aneurysmal subarachnoid hemorrhage: a systematic review. Neurol. Ther. 12: 371–390, https://doi.org/10.1007/s40120-022-00436-7.Search in Google Scholar PubMed PubMed Central

Cheng, Y.W., Li, W.J., Dou, X.J., Jia, R., Yang, H., Liu, X.G., Xu, C.B., Liu, J., Cao, Y.X., and Luo, G.G. (2018). Role of endothelin-1 and its receptors in cerebral vasospasm following subarachnoid hemorrhage. Mol. Med. Rep. 18: 5229–5236, https://doi.org/10.3892/mmr.2018.9513.Search in Google Scholar PubMed

Connolly, E.S.Jr., Rabinstein, A.A., Carhuapoma, J.R., Derdeyn, C.P., Dion, J., Higashida, R.T., Hoh, B.L., Kirkness, C.J., Naidech, A.M., Ogilvy, C.S., et al.. (2012). Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43: 1711–1737, https://doi.org/10.1161/str.0b013e3182587839.Search in Google Scholar

de Winkel, J., van der Jagt, M., Lingsma, H.F., Roozenbeek, B., Calvillo, E., Chou, S.H., Dziedzic, P.H., Etminan, N., Huang, J., Ko, N.U., et al. (2021). International practice variability in treatment of aneurysmal subarachnoid hemorrhage. J. Clin. Med. 10: 762–775, https://doi.org/10.3390/jcm10040762.Search in Google Scholar PubMed PubMed Central

Dodd, W.S., Laurent, D., Dumont, A.S., Hasan, D.M., Jabbour, P.M., Starke, R.M., Hosaka, K., Polifka, A.J., Hoh, B.L., and Chalouhi, N. (2021). Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: a review. J. Am. Heart Assoc. 10: e021845, https://doi.org/10.1161/jaha.121.021845.Search in Google Scholar

Endo, H., Hagihara, Y., Kimura, N., Takizawa, K., Niizuma, K., Togo, O., and Tominaga, T. (2022). Effects of clazosentan on cerebral vasospasm-related morbidity and all-cause mortality after aneurysmal subarachnoid hemorrhage: two randomized phase 3 trials in Japanese patients. J. Neurosurg. 137: 1707–1717, https://doi.org/10.3171/2022.2.jns212914.Search in Google Scholar PubMed

Friedrich, V., Flores, R., and Sehba, F.A. (2012). Cell death starts early after subarachnoid hemorrhage. Neurosci. Lett. 512: 6–11, https://doi.org/10.1016/j.neulet.2012.01.036.Search in Google Scholar PubMed PubMed Central

Fujimori, A., Yanagisawa, M., Saito, A., Goto, K., Masaki, T., Mima, T., Takakura, K., and Shigeno, T. (1990). Endothelin in plasma and cerebrospinal fluid of patients with subarachnoid haemorrhage. Lancet 336: 633, https://doi.org/10.1016/0140-6736(90)93432-o.Search in Google Scholar PubMed

Gathier, C.S., van den Bergh, W.M., van der Jagt, M., Verweij, B.H., Dankbaar, J.W., Muller, M.C., Oldenbeuving, A.W., Rinkel, G.J.E., Slooter, A.J.C., Group, H.S., et al.. (2018). Induced hypertension for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a randomized clinical trial. Stroke 49: 76–83, https://doi.org/10.1161/strokeaha.117.017956.Search in Google Scholar

Gupta, R., Woodward, K., Fiorella, D., Woo, H.H., Liebeskind, D., Frei, D., Siddiqui, A., De Leacy, R., Hanel, R., Elijovich, L., et al.. (2022). Primary results of the Vesalio NeVa VS for the treatment of symptomatic cerebral vasospasm following Aneurysm subarachnoid hemorrhage (VITAL) study. J. Neurointerv. Surg. 14: 815–819, https://doi.org/10.1136/neurintsurg-2021-017859.Search in Google Scholar PubMed

Haegens, N.M., Gathier, C.S., Horn, J., Coert, B.A., Verbaan, D., and van den Bergh, W.M. (2018). Induced hypertension in preventing cerebral infarction in delayed cerebral ischemia after subarachnoid hemorrhage. Stroke 49: 2630–2636, https://doi.org/10.1161/strokeaha.118.022310.Search in Google Scholar

Hanggi, D., Turowski, B., Beseoglu, K., Yong, M., and Steiger, H.J. (2008). Intra-arterial nimodipine for severe cerebral vasospasm after aneurysmal subarachnoid hemorrhage: influence on clinical course and cerebral perfusion. Am. J. Neuroradiol. 29: 1053–1060, https://doi.org/10.3174/ajnr.a1005.Search in Google Scholar PubMed PubMed Central

Higashida, R.T., Bruder, N., Gupta, R., Guzman, R., Hmissi, A., Marr, A., Mayer, S.A., Roux, S., Weidauer, S., and Aldrich, E.F. (2019). Reversal of vasospasm with clazosentan after aneurysmal subarachnoid hemorrhage: a pilot study. World Neurosurg. 128: e639–e648, https://doi.org/10.1016/j.wneu.2019.04.222.Search in Google Scholar PubMed

Hollingworth, M., Chen, P.R., Goddard, A.J., Coulthard, A., Soderman, M., and Bulsara, K.R. (2015). Results of an international survey on the investigation and endovascular management of cerebral vasospasm and delayed cerebral ischemia. World Neurosurg. 83: 1120–1126.e1121, https://doi.org/10.1016/j.wneu.2015.01.036.Search in Google Scholar PubMed

Hongo, K. and Kobayashi, S. (1993). Calcium antagonists for the treatment of vasospasm following subarachnoid haemorrhage. Neurol. Res. 15: 218–224, https://doi.org/10.1080/01616412.1993.11740140.Search in Google Scholar PubMed

Kerz, T., Boor, S., Beyer, C., Welschehold, S., Schuessler, A., and Oertel, J. (2012). Effect of intraarterial papaverine or nimodipine on vessel diameter in patients with cerebral vasospasm after subarachnoid hemorrhage. Br. J. Neurosurg. 26: 517–524, https://doi.org/10.3109/02688697.2011.650737.Search in Google Scholar PubMed

Keyrouz, S.G. and Diringer, M.N. (2007). Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit. Care 11: 220, https://doi.org/10.1186/cc5958.Search in Google Scholar PubMed PubMed Central

Kuwano, A., Ishiguro, T., Nomura, S., Omura, Y., Hodotsuka, K., Tanaka, Y., Murakami, M., Kawamata, T., and Kawashima, A. (2023). Predictive factors for improvement of symptomatic cerebral vasospasm following subarachnoid hemorrhage by selective intra-arterial administration of fasudil hydrochloride. Intervent. Neuroradiol., https://doi.org/10.1177/15910199231155037.Search in Google Scholar PubMed

Penn, D.L., Witte, S.R., Komotar, R.J., and Sander Connolly, E.Jr. (2015). Pathological mechanisms underlying aneurysmal subarachnoid haemorrhage and vasospasm. J. Clin. Neurosci. 22: 1–5, https://doi.org/10.1016/j.jocn.2014.05.025.Search in Google Scholar PubMed

Pickard, J.D., Walker, V., Vile, J., Perry, S., Smythe, P.J., and Hunt, R. (1987). Oral nimodipine reduces prostaglandin and thromboxane production by arteries chronically exposed to a periarterial haematoma and the antifibrinolytic agent tranexamic acid. J. Neurol. Neurosurg. Psychiatr. 50: 727–731, https://doi.org/10.1136/jnnp.50.6.727.Search in Google Scholar PubMed PubMed Central

Pluta, R.M., Boock, R.J., Afshar, J.K., Clouse, K., Bacic, M., Ehrenreich, H., and Oldfield, E.H. (1997). Source and cause of endothelin-1 release into cerebrospinal fluid after subarachnoid hemorrhage. J. Neurosurg. 87: 287–293, https://doi.org/10.3171/jns.1997.87.2.0287.Search in Google Scholar PubMed

Polin, R.S., Coenen, V.A., Hansen, C.A., Shin, P., Baskaya, M.K., Nanda, A., and Kassell, N.F. (2000). Efficacy of transluminal angioplasty for the management of symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J. Neurosurg. 92: 284–290, https://doi.org/10.3171/jns.2000.92.2.0284.Search in Google Scholar PubMed

Rabinstein, A.A., Weigand, S., Atkinson, J.L., and Wijdicks, E.F. (2005). Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke 36: 992–997, https://doi.org/10.1161/01.str.0000163090.59350.5a.Search in Google Scholar PubMed

Seyithanoglu, B.Y., Zaki Masud, A.R., Ergene, O., Morris, W.M., Kozan, O., Corbelli, J.C., and Wilson, M.F. (1998). Compliant vs non-compliant balloons. A prospective randomized study. Jpn. Heart J. 39: 45–54, https://doi.org/10.1536/ihj.39.45.Search in Google Scholar PubMed

Shimoda, M., Takeuchi, M., Tominaga, J., Oda, S., Kumasaka, A., and Tsugane, R. (2001). Asymptomatic versus symptomatic infarcts from vasospasm in patients with subarachnoid hemorrhage: serial magnetic resonance imaging. Neurosurgery 49: 1341–1348, https://doi.org/10.1097/00006123-200112000-00010.Search in Google Scholar PubMed

Smith, W.S., Dowd, C.F., Johnston, S.C., Ko, N.U., DeArmond, S.J., Dillon, W.P., Setty, D., Lawton, M.T., Young, W.L., Higashida, R.T., et al.. (2004). Neurotoxicity of intra-arterial papaverine preserved with chlorobutanol used for the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 35: 2518–2522, https://doi.org/10.1161/01.str.0000144682.00822.83.Search in Google Scholar

Sokolowski, J.D., Chen, C.J., Ding, D., Buell, T.J., Raper, D.M., Ironside, N., Taylor, D.G., Starke, R.M., and Liu, K. (2018). Endovascular treatment for cerebral vasospasm following aneurysmal subarachnoid hemorrhage: predictors of outcome and retreatment. J. Neurointerv. Surg. 10: 367–374, https://doi.org/10.1136/neurintsurg-2017-013363.Search in Google Scholar PubMed

Tani, E. (2002). Molecular mechanisms involved in development of cerebral vasospasm. Neurosurg. Focus 12: 1–8, https://doi.org/10.3171/foc.2002.12.3.8.Search in Google Scholar PubMed

Tani, E. and Matsumoto, T. (2004). Continuous elevation of intracellular Ca2+ is essential for the development of cerebral vasospasm. Curr. Vasc. Pharmacol. 2: 13–21, https://doi.org/10.2174/1570161043476492.Search in Google Scholar PubMed

Treggiari, M.M., Rabinstein, A.A., Busl, K.M., Caylor, M.M., Citerio, G., Deem, S., Diringer, M., Fox, E., Livesay, S., Sheth, K.N., et al.. (2023). Guidelines for the neurocritical care management of aneurysmal subarachnoid hemorrhage. Neurocritical Care 1–28, https://doi.org/10.1007/s12028-023-01713-5.Search in Google Scholar PubMed

Vajkoczy, P., Horn, P., Bauhuf, C., Munch, E., Hubner, U., Ing, D., Thome, C., Poeckler-Schoeninger, C., Roth, H., and Schmiedek, P. (2001). Effect of intra-arterial papaverine on regional cerebral blood flow in hemodynamically relevant cerebral vasospasm. Stroke 32: 498–505, https://doi.org/10.1161/01.str.32.2.498.Search in Google Scholar PubMed

Vatter, H., Guresir, E., Konig, R., Durner, G., Kalff, R., Schuss, P., Mayer, T.E., Konczalla, J., Hattingen, E., Seifert, V., et al.. (2022). Invasive diagnostic and therapeutic management of cerebral VasoSpasm after aneurysmal subarachnoid hemorrhage (IMCVS) – a phase 2 randomized controlled trial. J. Clin. Med. 11: 6197–6205, https://doi.org/10.3390/jcm11206197.Search in Google Scholar PubMed PubMed Central

Venkatraman, A., Khawaja, A.M., Gupta, S., Hardas, S., Deveikis, J.P., Harrigan, M.R., and Kumar, G. (2018). Intra-arterial vasodilators for vasospasm following aneurysmal subarachnoid hemorrhage: a meta-analysis. J. Neurointerv. Surg. 10: 380–387, https://doi.org/10.1136/neurintsurg-2017-013128.Search in Google Scholar PubMed

Weidauer, S., Lanfermann, H., Raabe, A., Zanella, F., Seifert, V., and Beck, J. (2007). Impairment of cerebral perfusion and infarct patterns attributable to vasospasm after aneurysmal subarachnoid hemorrhage: a prospective MRI and DSA study. Stroke 38: 1831–1836, https://doi.org/10.1161/strokeaha.106.477976.Search in Google Scholar

Xie, A., Aihara, Y., Bouryi, V.A., Nikitina, E., Jahromi, B.S., Zhang, Z.D., Takahashi, M., and Macdonald, R.L. (2007). Novel mechanism of endothelin-1-induced vasospasm after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 27: 1692–1701, https://doi.org/10.1038/sj.jcbfm.9600471.Search in Google Scholar PubMed

Yoshimoto, Y., Tanaka, Y., and Hoya, K. (2001). Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke 32: 1989–1993, https://doi.org/10.1161/hs0901.095646.Search in Google Scholar PubMed

Ziu, E., Khan Suheb, M.Z., and Mesfin, F.B. (2023). Subarachnoid hemorrhage. StatPearls. Treasure, Island, FL, USA.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/revneuro-2023-0148).


Received: 2023-11-27
Accepted: 2023-12-21
Published Online: 2024-01-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2023-0148/html
Scroll to top button