Skip to main content
Log in

Influence of coloured lights on growth and enzyme production of beneficial endophytic fungi

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

The influence of light regulation on fungal growth and enzyme production was tested on endophytic isolates of Fusarium proliferatum (CCH), Colletotrichum boninense (PL1, PL9, OL2), Colletotrichum gloeosporiodes (OL3) and Colletotrichum siamense (PL3). The isolates were treated with blue, red, green, and yellow light, while white fluorescent light (12 h light/12 h dark photoperiod) and 24 h dark conditions were applied as control. Results revealed that coloured light treatments induced formation of circadian rings, while exposure to white light and dark conditions showed less pronounced circadian rings. Growth and sporulation of endophytes were not significantly influenced by light. By contrast, enzyme production was affected by coloured light treatments, notably with red (amylase), blue (cellulase) and yellow (cellulase, xylanase, L-asparaginase) light, resulting in lower enzyme levels for certain isolates. Under control conditions, enzyme production was relatively higher for amylase, cellulase, xylanase (for cultures incubated in the dark), and for L-asparaginase (for cultures incubated in white fluorescent light). Among the endophytic isolates, F. proliferatum (CCH) showed better response to coloured light treatment as higher sporulation and enzyme production was detected, although growth was significantly suppressed. On the contrary, C. gloeosporiodes (OL3) showed better growth but significantly lower enzyme production and sporulation when treated with the various coloured light. This study revealed that coloured light may have the potential to manipulate growth, sporulation and enzyme production in certain fungal species as strategies for fungal control or for harnessing of valuable enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and material are available upon reasonable request.

References

  • Abdel-Raou M, Aldeweik HM, Elbendary EY (2019) Impact of physical and chemical factors on L-asparaginase enzyme purified from soil bacteria. J Biol Sc 20:48–55

    Article  Google Scholar 

  • Adesina FC, Onilude AA (2013) Isolation, identification and screening of xylanase and glucanase-producing microfungi from degrading wood in Nigeria. Afr J Agric Res 8:4414–4421

    Article  CAS  Google Scholar 

  • Araujo NL, Avelino KV, Halabura MIW, Marim RA, Kassem ASS, Linde GA, Colauto NB, Doo-Valle JS (2021) Use of green light to improve the production of lignocellulose-decay enzymes by Pleurotus spp. in liquid cultivation. Enzyme Microb Technol 149:109860. https://doi.org/10.1016/j.enzmictec.2021.109860

    Article  CAS  PubMed  Google Scholar 

  • Beier S, Hinterdobler W, Bazafkan H, Schillinger L, Schmoll M (2020) CLR1 and CLR2 are light dependent regulators of xylanase and pectinase genes in Trichoderma reesei. Fungal Genet Biol 136:103315. https://doi.org/10.1016/j.fgb.2019.103315

    Article  CAS  PubMed  Google Scholar 

  • Betina V, Zajacova J (1978) Regulation of periodicity and intensity of photo-induced conidiation of Trichoderma viride. Folia Microbiol 23:453–459

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2011) Optimization of cultural conditions affecting growth and improved bioactive metabolites production by a subsurface Aspergillus strain TSF 146. Int J Appl Biol Pharm 2:133–143

    Google Scholar 

  • Bhunjun CS, Phillips AJL, Jayawardena RS, Promputtha I, Hyde KD (2021) Importance of molecular data to identify fungal plant pathogens and guidelines for pathogenicity testing based on Koch’s postulates. Pathogens 10:1096. https://doi.org/10.3390/pathogens10091096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochromes FphA represses sexual development in red light. Curr Biol 15:1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Brown LS (2004) Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci 3:555–565

    Article  CAS  PubMed  Google Scholar 

  • Calixto JB (2019) The role of natural products in modern drug discovery. Annals Brazil Acad Sci 91(3). https://doi.org/10.1590/0001-3765201920190105

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell MA, Medd RW, Brown JB (2003) Optimizing conditions for growth and sporulation of Pyrenophora semeniperda. Plant Pathol 52:448–454

    Article  Google Scholar 

  • Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white-collar complex. PLoS 8:e84223. https://doi.org/10.1371/journal.pone.0084223

    Article  CAS  Google Scholar 

  • Casas-Flores S, Rios-Momberg M, Rosales-Saavedra T, Martinez-Hernandez P, Olmedo-Monfil V, Herrera-Estrella A (2006) Cross-talk between a fungal blue light perception system and the cyclic AMP signalling pathway. Eukaryot Cell 5:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CW, Chen CK, Chang CJ, Chen LY (2012) Effect of colour LEDs on mycelia growth of Aspergillus ficuum and phytase production in photo-fermentations. J Photochem Photobiol B 106:81–86

    Article  CAS  PubMed  Google Scholar 

  • Cheong KK, Strub C, Montet D, Durand N, Alter P, Meile JC, Galindo SS, Fontana A (2016) Effect of different light wavelength on the growth and ochratoxin A production in Aspergillus carbonarius and Aspergillus westerdijkiae. Fungal Biol 120:745–751

    Article  CAS  PubMed  Google Scholar 

  • Chow YY, Ting ASY (2015) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 56:869–876

    Article  Google Scholar 

  • Cui Y, Yi D, Bai XF, Sun BS, Zhao YQ, Zhang YX (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Gingko biloba. Fitoterapia 83(5):913–920

    Article  CAS  PubMed  Google Scholar 

  • Das J, Busse HG (1990) Light-driven diural zonation in the filamentous fungus Fusarium solani. Inter J Develop Biol 34(2):319–322

    CAS  Google Scholar 

  • Dhakshinamoorthy M, Packiam KK (2021) Camptothecin: an anticancer drug from Pestalotiopsis microspora Mh458929-An endophytic fungus isolated from an enthanopharmacologically important medicinal plant. Cordia Dichotoma G Forst Pharmacogn Mag 17(5):87–95. https://doi.org/10.4103/pm.pm_417_20

    Article  CAS  Google Scholar 

  • Estrada AF, Avalos J (2009) Regulation and targeted mutation of opsA, coding for the nop-1 opsin orthologue in Fusarium fujukuroi. J Mol Biol 387:59–73

    Article  CAS  PubMed  Google Scholar 

  • Farris MH, Ford KA, Doyle RC (2016) Qualitative and quantitative assays for detection and characterization of protein antimicrobials. J Vis Exp 110:e53819. https://doi.org/10.3791/53819

    Article  CAS  Google Scholar 

  • Franco DL, Canessa P, Bellora N, Risau-Gusman S, Olivares-Yanes C, Perez-Lara R, Libkind D, Larrondo LF, Marpegan L (2017) Spontaneous circadian rhythms in a cold-adapted natural isolate of Aureobasidium pullalans. Sci Rep 7:13812–13837

    Article  Google Scholar 

  • Fuller KK, Loros JJ, Dunlap JC (2015) Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 61:275–288

    Article  CAS  PubMed  Google Scholar 

  • Gan PT, Lim YY, Ting ASY (2023) Influence of light regulation on growth and enzyme production in rare endolichenic fungi. Folia Microbiol 68:741–755. https://doi.org/10.1007/s12223-023-01050-2

    Article  CAS  Google Scholar 

  • Gan PT, Ting ASY (2019) Light mediation as a strategy to induce production of valuable microbial compounds. In: Arora PK (ed.) Microbial Technology for the Welfare of Society, Springer Singapore, Singapore, 17:101–123. https://doi.org/10.1007/978-981-13-8844-6_5

  • Gyalai-Korpos M, Nagy G, Mareczky Z, Schuster A, Reczey K, Schmoll M (2010) Relevance of the light signalling machinery of cellulase expression in Trichoderma reesei (hypocrea jecorina). BMC Res Notes 3:330. https://doi.org/10.1186/1756-0500-3-330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha SY, Jung JY, Park JH, Lee DH, Choi JW, Yang JK (2020) Effect of light-emitting diodes on cordycepin production in submerged Cordyceps militaris cultures. J Mushroom 18:10–19

    Google Scholar 

  • Heintzen C (2012) Plant and fungal photopigments. Wiley Interdiscip Rev Membr Transp Signal 1(4):411–432

    Article  CAS  Google Scholar 

  • Hill EP (1976) Effect of light on growth and sporulation of Aspergillus ornatus. J Gen Microbiol 95:39–44

    Article  CAS  PubMed  Google Scholar 

  • Hosseinpour L, Zareei M, Boroujeni ZB, Yaghoubi R, Hashemi SJ (2017) Effect of different incubation temperatures, times, and colored lights on fungal biomass and black pigment (melanin) production in Exophiala crusticola. Infect Epidemiol Microbiol 3:90–95

    CAS  Google Scholar 

  • Idnurm A, Heitman H (2005) Photo-sensing fungi: phytochrome in the spotlight. Curr Biol 15(20):829–832

    Article  Google Scholar 

  • Igbalajobi O, Yu ZZ, Fischer R (2019) Red and blue light sensing in the plant pathogen Alternaria alternata depends on phytochrome and the white collar protein LreA. Appl Environ Microbiol 10:e00371-e419. https://doi.org/10.1128/mBio.00371-19

    Article  CAS  Google Scholar 

  • Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol Sec Plant Pathogen Interact 7:1–14. https://doi.org/10.3389/fmicb.2016.00906

    Article  Google Scholar 

  • Johnpaul M, Gangdadevi V (2008) Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. Mycol Balcanica 5:1–4

    Google Scholar 

  • Keller NO, Nesbitt C, Sarr B, Phillips TD, Burow GB (1997) pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathol 87:643–648

    Article  CAS  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Patil D, Rajamohanan RP, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. Plos One 8(9):e71805. https://doi.org/10.1371/journal.pone.0071805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda S, Bauer CR (2002) AppA is a blue light photoreceptor that anti-represses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110(5):613–623

    Article  CAS  PubMed  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Morosoli R, Durand S, Boucher F (1989) Stimulation of xylanase synthesis in Cryptococcus albidus by cyclic AMP. FEMS Microbiol Lett 57:57–60

    Article  CAS  Google Scholar 

  • Murthy PS, Suzuki S, Kusumoto KI (2015) Effect of light on the growth and acid protease production of Aspergillus oryzae. Food Sci Technol 21:631–635

    CAS  Google Scholar 

  • Nogueira KMV, Costa MDN, Paule RGD, Mendonca-Natividade FC, Ricci-Azevedo R, Silva RN (2015) Evidence of cAMP involvement in cellobiohydrolase expression and secretion by Trichoderma reesei in presence of the inducer sophorose. BMC Microbiol 15:195. https://doi.org/10.1186/s12866-015-0536-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai N, Keshi PK, Verma A, Kamble SC, Mishra P, Barik S, Singh SK, Gautam V (2021) Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 12(3):139–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathod DP, Dar MA, Gade AK, Rai MK (2014) Griseofulvin producing endophytic Nigrospora oryzae from Indian Emblica officinalis Gaertn: a new report. J Biotechnol Bioengin 3(5):1–5

    Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Muller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Ann Rev Microbiol 64:585–610

    Article  CAS  Google Scholar 

  • Rozalska M, Mikucki J (1992) Staphylococcal L-asparaginase: catabolic repression of synthesis. Pol J Microbiol 41:145–150

    CAS  Google Scholar 

  • Rustamova N, Bozorov K, Efferth T, Yili A (2020) Novel secondary metabolites from endophytic fungi: synthesis and biological properties. Phytochem Rev 19:425–448

    Article  CAS  Google Scholar 

  • Schreckenbach T, Walckhoff B, Verfuerth C (1981) Blue light receptor in a white mutant of Physarum polycephalum mediates inhibition of spherulation and regulation of glucose metabolism. PNAS 78:1009–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J (2017) How light affects the life of Botrytis. Fungal Genet Biol 106:26–41

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi J, Gaucher M (1977) Conidiogenesis and secondary metabolism in Penicillium urticae. Appl Environ Microbiol 33:147–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soumya K, Swathi L, Sreelatha GL, Sharmila T (2014) Light influences pigment, biomass and morphology in Chaetomium cupreum- SS02- A photoresponse study. Int J Curr Microbiol Appl Sci 3:53–64

    Google Scholar 

  • Sridevi B, Charya MAS (2011) Isolation, identification and screening of potential cellulase-free xylanase producing fungi. Afr J Biotechnol 10:4624–4630

    Google Scholar 

  • Sunitha VH, Ramesha A, Savitha J, Srinivas C (2012) Amylase production by endophytic fungi Cylindocephalum sp. isolated from medicinal plant Alpinia calcarate. Braz J Microbiol 43:1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano Y, Kikuchi T, Kubo Y, Hamer JE, Mise K, Furusawa I (2000) The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant Microbe Interact 13:374–383

    Article  CAS  PubMed  Google Scholar 

  • Tan KK, Epton AH (1973) Effect of light on the growth and sporulation of Botrytis cinerea. Trans Br Mycol Soc 61:145–157

    Article  Google Scholar 

  • Tisch D, Schmoll M (2010) Light regulation of metabolic pathway in fungi. Appl Microbiol 85:1259–1277

    CAS  Google Scholar 

  • Velmurugan P, Lee YH, Venil CK, Perumalsamy L, Chae JC, Oh BT (2010) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346–350

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Dai Y, Chen WP, Shao YC, Chen FS (2016a) Effects of light intensity and color on the biomass, extracellular red pigments, and citrinin production of Monascus ruber. J Agric Food Chem 64:9506–9514

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li N, Li JG, Dunlap JC, Trail F, Townsend JP (2016) The fast-evolving phy-2 gene modulates sexual development in response to light in the model fungus Neurospora crassa. mBio 7:e02148. https://doi.org/10.1128/mBio.02148-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitz HJ, Ballard AL, Campbell CD, Killham K (2001) The effect of culture conditions on the mycelial growth and luminescence of naturally bioluminescent fungi. FEMS Microbiol Lett 202:165–170

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Chen HB, Chen MK, Kan SC, Shieh CJ, Liu YC (2013) Quantitative analysis of LED effects on edible mushroom Pleurotus eryngii in solid and submerged cultures. J Chem Technol Biotechnol 88:1841–1846

    Article  CAS  Google Scholar 

  • Yap LS, Lee WL, Ting ASY (2021) Optimization of L-asparaginase production from endophytic Fusarium proliferatum using OFAT and RSM and its cytotoxic evaluation. J Microbiol Methods 191:e106358. https://doi.org/10.1016/j.mimet.2021.106358

    Article  CAS  Google Scholar 

  • Yap LS, Lee WL, Ting ASY (2022) Bioprocessing and purification of extracellular L-asparaginase produced by endophytic Colletotrichum gloeosporioides and its anticancer activity. Prep Biochem Biotechnol 53(6):653–671. https://doi.org/10.1080/10826068.2022.2122064

    Article  CAS  PubMed  Google Scholar 

  • Yu ZZ, Fischer R (2019) Light sensing and responses in fungi. Nat Rev 17:25–36

    CAS  Google Scholar 

  • Zhang XX, Gao YY, Yin Y, Cai MH, Zhou XS, Zhang YX (2017) Regulation of different polyketide biosynthesis by green light in an endophytic fungus of mangrove leaf. 3 Biotech 7:363. https://doi.org/10.1007/s13205-017-0996-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Wang G, Yang QL, Yang X, Zheng YQ, Liu Y, Xing FG (2021) Effects of light on the ochratoxigenic fungi Aspergillus ochraceus and Aspergillus carbonarius. Toxins 13(4):251. https://doi.org/10.3390/toxins1304025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to Monash University Malaysia for the internal research funding provided and the facilities to conduct the research.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by Gan Peck Ting. The manuscript is written by Adeline Su Yien Ting. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adeline Su Yien Ting.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors consent to the publication of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, A.S.Y., Gan, P.T. Influence of coloured lights on growth and enzyme production of beneficial endophytic fungi. Int Microbiol (2024). https://doi.org/10.1007/s10123-024-00486-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-024-00486-x

Keywords

Navigation