Skip to main content
Log in

Wave scattering by a circular cylinder over a porous bed

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The dispersion of waves over a permeable seabed due to the presence of a vertically floating rigid circular cylinder is investigated under the assumptions of the linearized water wave theory and small-amplitude surface waves. Using the radiation condition and boundary conditions, the unknown potentials for the free-surface region and for the region covered by the cylinder are determined. The velocity potentials of the incident and scattered waves are expanded using the Bessel and Hankel functions for each region in the problem. The eigenfunction expansion technique is employed to solve the resulting boundary value problem. The effectiveness of the study is accessed by demonstrating the wave forces on the circular cylinder and the flow distribution along with the temporal simulation of the flow for different parameters. It is shown that the presence of a floating circular cylinder over the porous seabed reduces the amplitude of a surface wave on the leeside of the structure significantly. It is also illustrated that the radius and height of the cylinder play a significant role in reducing the wave forces on the cylinder and, hence, in creating a calm region in the leeside of the structure. The proposed setup has the potential to help design offshore structures that are capable of reducing the impact of the wave forces on the coastal structures, which can then safely be used for various marine operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu, Y., Cheng Li, Y., Teng, B., Dong, S.: Wave motion over a submerged breakwater with an upper horizontal porous plate and a lower horizontal solid plate. Ocean Eng. 35, 1588–1596 (2008). https://doi.org/10.1016/j.oceaneng.2008.08.003

    Article  Google Scholar 

  2. Liu, H., Zhang, L., Chen, H., Zhang, W., Liu, M.: Wave diffraction by vertical cylinder with multiple concentric perforated walls. Ocean Eng. 166, 242–252 (2018). https://doi.org/10.1016/j.oceaneng.2018.08.025

    Article  Google Scholar 

  3. Sarkar, A., Bora, S.N.: Hydrodynamic forces and moments due to interaction of linear water waves with truncated partial-porous cylinders in finite depth. J. Fluids Struct. 94(102), 898 (2020). https://doi.org/10.1016/j.jfluidstructs.2020.102898

    Article  Google Scholar 

  4. Zheng, S., Meylan, M., Zhu, G., Greaves, D., Iglesias, G.: Hydroelastic interaction between water waves and an array of circular floating porous elastic plates. J. Fluid Mech. 900, A20 (2020). https://doi.org/10.1017/jfm.2020.508

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Michele, S., Zheng, S., Buriani, F., Gl, A.: Floating hydroelastic circular plate in regular and irregular waves. Eur. J. Mech. B/Fluids 99, 148–162 (2023). https://doi.org/10.1016/j.euromechflu.2023.01.008

    Article  ADS  MathSciNet  Google Scholar 

  6. Shankar, N., Balendra, T., Soon, C.: Wave loads on large vertical cylinders: a design method. Ocean Eng. 11, 65–85 (1984). https://doi.org/10.1016/0029-8018(84)90023-4

    Article  Google Scholar 

  7. Kim, N., Park, M., Yang, S.: Wave force analysis of the vertical circular cylinder by boundary element method. KSCE J. Civ. Eng. 11, 31–35 (2007). https://doi.org/10.1007/BF02823369

    Article  Google Scholar 

  8. Zeng, J., Constantinescu, G.: Flow and coherent structures around circular cylinders in shallow water. Phys. Fluids 29(066), 601 (2017). https://doi.org/10.1063/1.4984926

    Article  CAS  Google Scholar 

  9. Huang, Y.-M., Zhao, M., Wang, P., Du, X.-L., Liu, J.-B.: Earthquake and wave analysis of the circular cylinder considering water-structure-soil interaction. J. Vib. Eng. 34, 730–738 (2021). https://doi.org/10.16385/j.cnki.issn.1004-4523.2021.04.009

    Article  Google Scholar 

  10. Chen, J., Lin, Y., Lee, Y., Wu, C.: Water wave interaction with surface-piercing porous cylinders using the null-field integral equations. Ocean Eng. 38, 409–418 (2011). https://doi.org/10.1016/j.oceaneng.2010.11.006

    Article  Google Scholar 

  11. Liu, J., Guo, A., Nandasena, N., Melville, B.W., Li, H.: Theoretical and experimental investigation on wave interaction with a concentric porous cylinder form of breakwater. Ocean Eng. 160, 156–167 (2018). https://doi.org/10.1016/j.oceaneng.2018.04.050

    Article  Google Scholar 

  12. Mackay, E., Shi, W., Qiao, D., Gabl, R., Davey, T., Ning, D., Johanning, L.: Numerical and experimental modelling of wave interaction with fixed and floating porous cylinders. Ocean Eng. 242(110), 118 (2021). https://doi.org/10.1016/j.oceaneng.2021.110118

    Article  Google Scholar 

  13. Yu, X., Chwang, A.: Analysis of wave scattering by submerged circular disk. J. Eng. Mech. 119, 1804–1817 (1993). https://doi.org/10.1061/(ASCE)0733-9399(1993)119:9(1804)

    Article  Google Scholar 

  14. Farina, L., Martin, P.: Scattering of water waves by a submerged disc using a hypersingular integral equation. Appl. Ocean Res. 20, 121–134 (1998). https://doi.org/10.1016/S0141-1187(97)00039-4

    Article  Google Scholar 

  15. Jiang, S.-C., Gou, Y., Teng, B.: Water wave radiation problem by a submerged cylinder. J. Eng. Mech. 140(06014), 003 (2014). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000723

    Article  Google Scholar 

  16. Zheng, S., Meylan, M., Greaves, D., Iglesias, G.: Water-wave interaction with submerged porous elastic disks. Phys. Fluids 32(047), 106 (2020). https://doi.org/10.1063/5.0006119

    Article  CAS  Google Scholar 

  17. Zheng, S., Liang, H., Michele, S., Greaves, D.: Water wave interaction with an array of submerged circular plates: Hankel transform approach. Phys. Rev. Fluids 8(014), 803 (2023). https://doi.org/10.1103/PhysRevFluids.8.014803

    Article  Google Scholar 

  18. Miles, J., Gilbert, F.: Scattering of gravity waves by a circular dock. J. Fluid Mech. 34, 783–793 (1968). https://doi.org/10.1017/S0022112068002235

    Article  ADS  Google Scholar 

  19. Garrett, C.J.R.: Wave forces on a circular dock. J. Fluid Mech. 46, 129–139 (1971). https://doi.org/10.1017/S0022112071000430

    Article  ADS  Google Scholar 

  20. Kim, M.-H., Yue, D.K.: The complete second-order diffraction solution for an axisymmetric body part 1. Monochromatic incident waves. J. Fluid Mech. 200, 235–264 (1989). https://doi.org/10.1017/S0022112089000649

    Article  ADS  MathSciNet  Google Scholar 

  21. Kim, M.-H., Yue, D.K.: The complete second-order diffraction solution for an axisymmetric body part 2. Bichromatic incident waves and body motions. J. Fluid Mech. 211, 557–593 (1990). https://doi.org/10.1017/S0022112090001690

    Article  ADS  MathSciNet  Google Scholar 

  22. Chau, F., Taylor, R.E.: Second-order wave diffraction by a vertical cylinder. J. Fluid Mech. 240, 571–599 (1992). https://doi.org/10.1017/S0022112092000211

    Article  ADS  MathSciNet  Google Scholar 

  23. Andrianov, A., Hermans, A.: Hydroelasticity of a circular plate on water of finite or infinite depth. J. Fluids Struct. 20, 719–733 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.03.002

    Article  ADS  Google Scholar 

  24. Montiel, F., Bennetts, L.G., Squire, V.A., Bonnefoy, F., Ferrant, P.: Hydroelastic response of floating elastic discs to regular waves. part 2. Modal analysis. J. Fluid Mech. 723, 629–652 (2013). https://doi.org/10.1017/jfm.2013.124

    Article  ADS  Google Scholar 

  25. Teng, B., Cong, P.-W.: A novel decomposition of the quadratic transfer function (qtf) for the time-domain simulation of non-linear wave forces on floating bodies. Appl. Ocean Res. 65, 112–128 (2017). https://doi.org/10.1016/j.apor.2017.03.016

    Article  Google Scholar 

  26. Cong, P., Bai, W., Teng, B., Gou, Y.: Semi-analytical solution to the second-order wave loads on a vertical cylinder in bi-chromatic bi-directional waves. Ocean Eng. 161, 205–220 (2018). https://doi.org/10.1016/j.oceaneng.2018.04.094

    Article  Google Scholar 

  27. Zheng, S., Porter, R., Greaves, D.: Wave scattering by an array of metamaterial cylinders. J. Fluid Mech. 903, A50 (2020). https://doi.org/10.1017/jfm.2020.660

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Michele, S., Zheng, S., Greaves, D.: Wave energy extraction from a floating flexible circular plate. Ocean Eng. 245(110), 275 (2022). https://doi.org/10.1016/j.oceaneng.2021.110275

    Article  Google Scholar 

  29. Zhou, X., Jiang, Q., Wang, Y., Chen, L., Wang, S., Wang, K.: Numerical simulation of wave-current force characteristics of horizontal floating cylinder in heave motion. J. Mar. Sci. Eng. 10, 1884 (2022). https://doi.org/10.3390/jmse10121884

    Article  Google Scholar 

  30. Zeng, X., Wang, Q., Shi, M., Kang, Y., Yu, F.: Hydrodynamic interactions between waves and cylinder arrays of relative motions composed of truncated floating cylinders with five degrees of freedom. J. Fluids Struct. 115(103), 785 (2022). https://doi.org/10.1016/j.jfluidstructs.2022.103785

    Article  Google Scholar 

  31. Chen, H., Xu, Q., Zheng, X., Bennetts, L.G., Xie, B., Lin, Z., Lin, Z., Li, Y.: Viscous effects on the added mass and damping forces during free heave decay of a floating cylinder with a hemispherical bottom. Eur. J. Mech. B/Fluids 98, 8–20 (2023). https://doi.org/10.1016/j.euromechflu.2022.11.002

    Article  ADS  Google Scholar 

  32. Konispoliatis, D.N.: Near trapping phenomena in arrays of porous vertical cylinders. Phys. Fluids 35(093), 607 (2023). https://doi.org/10.1063/5.0164667

    Article  CAS  Google Scholar 

  33. Corvaro, S., Mancinelli, A., Brocchini, M., Seta, E., Lorenzoni, C.: On the wave damping due to a permeable seabed. Coast. Eng. 57, 1029–1041 (2010). https://doi.org/10.1016/j.coastaleng.2010.06.005

    Article  Google Scholar 

  34. Martha, S., Bora, S., Chakrabarti, A.: Oblique water-wave scattering by small undulation on a porous sea-bed. Appl. Ocean Res. 29, 86–90 (2007). https://doi.org/10.1016/j.apor.2007.07.001

    Article  Google Scholar 

  35. Maiti, P., Mandal, B.: Water wave scattering by an elastic plate floating in an ocean with a porous bed. Appl. Ocean Res. 47, 73–84 (2014). https://doi.org/10.1016/j.apor.2014.03.006

    Article  Google Scholar 

  36. Behera, H., Ng, C.-O., Sahoo, T.: Oblique wave scattering by a floating elastic plate over a porous bed in single and two-layer fluid systems. Ocean Eng. 159, 280–294 (2018). https://doi.org/10.1016/j.oceaneng.2018.04.031

    Article  Google Scholar 

  37. Chanda, A., Bora, S.N.: Effect of a porous sea-bed on water wave scattering by two thin vertical submerged porous plates. Eur. J. Mech. B/Fluids 84, 250–261 (2020). https://doi.org/10.1016/j.euromechflu.2020.06.009

    Article  ADS  MathSciNet  Google Scholar 

  38. Chanda, A., Sarkar, A., Bora, S.N.: An analytical study of scattering of water waves by a surface-piercing bottom-mounted compound porous cylinder placed on a porous sea-bed. J. Fluids Struct. 115(103), 764 (2022). https://doi.org/10.1016/j.jfluidstructs.2022.103764

    Article  Google Scholar 

  39. Martha, S., Bora, S., Chakrabarti, A.: Oblique water-wave scattering by small undulation on a porous sea-bed. Appl. Ocean Res. 29, 86–90 (2007). https://doi.org/10.1016/j.apor.2007.07.001

    Article  Google Scholar 

  40. Mohanty, S., Sidharth, M.: Time dependent wave motion in a permeable bed. Meccanica 54, 1481–1497 (2020). https://doi.org/10.1007/s11012-020-01176-4

    Article  MathSciNet  Google Scholar 

  41. Yu, X., Chwang, A.T.: Wave-induced oscillation in harbor with porous breakwaters. J. Waterw. Port Coast. Ocean Eng. 120, 125–144 (1994). https://doi.org/10.1061/(ASCE)0733-950X(1994)120:2(125)

    Article  Google Scholar 

  42. Pascal, J.: Linear stability of fluid flow down a porous inclined plane. J. Phys. D Appl. Phys. 32, 417 (1999). https://doi.org/10.1088/0022-3727/32/4/011

    Article  ADS  CAS  Google Scholar 

  43. Sadiq, I., Usha, R.: Thin newtonian film flow down a porous inclined plane: stability analysis. Phys. Fluids 20(022), 105 (2008). https://doi.org/10.1063/1.2841363

    Article  CAS  Google Scholar 

  44. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967). https://doi.org/10.1017/S0022112067001375

    Article  ADS  Google Scholar 

  45. Zheng, S., Zhang, Y., Iglesias, G.: Wave-structure interaction in hybrid wave farms. J. Fluids Struct. 83, 386–412 (2018). https://doi.org/10.1016/j.jfluidstructs.2018.09.012

    Article  ADS  Google Scholar 

  46. Zheng, S., Antonini, A., Zhang, Y., Greaves, D., Miles, J., Iglesias, G.: Wave power extraction from multiple oscillating water columns along a straight coast. J. Fluid Mech. 878, 445–480 (2019). https://doi.org/10.1017/jfm.2019.656

    Article  ADS  MathSciNet  Google Scholar 

  47. Mandal, S., Sahoo, T.: Wave interaction with floating flexible circular cage system. In: Proceedings of the 11th International Conference on Hydrodynamics, ICHD 2014, pp. 19–24 (2014). https://doi.org/10.13140/2.1.3848.4163

  48. Sarkar, A., Chanda, A.: Structural performance of a submerged bottom-mounted compound porous cylinder on the water wave interaction in the presence of a porous sea-bed. Phys. Fluids 34(092), 113 (2022). https://doi.org/10.1063/5.0106425

    Article  CAS  Google Scholar 

  49. Ning, Z., Zhao, L., Teng, B., Johanning, L.: Wave diffraction from a truncated cylinder with an upper porous sidewall and an inner column. Ocean Eng. 130, 471–481 (2017). https://doi.org/10.1016/j.oceaneng.2016.11.043

    Article  Google Scholar 

  50. Li, Y., Zhao, X., Geng, J., Mackay, E., Johanning, L.: Wave scattering by a vertical cylinder with a submerged porous plate: further analysis. Ocean Eng. 259, 111–117 (2022). https://doi.org/10.1016/j.oceaneng.2022.111711

    Article  Google Scholar 

  51. Huang, J., Porter, R.: Water wave propagation through arrays of closely spaced surface-piercing vertical barriers. J. Fluid Mech. 960, A20 (2023). https://doi.org/10.1017/jfm.2023.207

    Article  ADS  MathSciNet  CAS  Google Scholar 

  52. Li, A., Liu, Y.: New analytical solutions to water wave diffraction by vertical truncated cylinders. Int. J. Nav. Archit. 11, 952–969 (2019). https://doi.org/10.1016/j.ijnaoe.2019.04.006

    Article  Google Scholar 

  53. Bhatta, D.D., Rahman, M., et al.: Wave loadings on a vertical cylinder due to heave motion. Int. J. Math. Math. Sci. 18, 151–170 (1995). https://doi.org/10.1155/S0161171295000202

    Article  MathSciNet  Google Scholar 

  54. Selvan, S.A., Gayathri, R., Behera, H., Meylan, M.H.: Surface wave scattering by multiple flexible fishing cage system. Phys. Fluids 33(037), 119 (2021). https://doi.org/10.1063/5.0040662

    Article  CAS  Google Scholar 

  55. Meylan, M.H.: Time-dependent motion of a floating circular elastic plate. Fluids 6, 29 (2021). https://doi.org/10.3390/fluids6010029

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.K.K. gratefully acknowledges the financial support from the Council of Scientific and Industrial Research (CSIR) [09/1022(12263)/2021-EMR-I]. A.K.K. and V.K.G. also express their gratitude to the DST-FIST Project SR/FST/MS I/2018/26 for their support toward the Bhaskaracharya Mathematics Laboratory and Brahmagupta Mathematics Library that have been used to carry out this work. H.B. gratefully acknowledges the financial support from SERB, Department of Science and Technology, Government of India, through the “CRG" project, Award No. CRG/2022/006698.

Author information

Authors and Affiliations

Authors

Contributions

A.K.K. contributed to Coding, Writing-original draft, Formal analysis, Replying to reviewers’ comments. H.B. contributed to Conceptualization, Coding, Writing-review and editing, Replying to reviewers’ comments. V.K.G. contributed to Writing-review and editing, Replying to reviewers’ comments, Supervision.

Corresponding author

Correspondence to Harekrushna Behera.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, A.K., Behera, H. & Gupta, V.K. Wave scattering by a circular cylinder over a porous bed. Arch Appl Mech 94, 555–570 (2024). https://doi.org/10.1007/s00419-023-02536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02536-8

Keywords

Navigation