Skip to main content
Log in

BMO-regularity for a degenerate transmission problem

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We examine a transmission problem driven by a degenerate quasilinear operator with a natural interface condition. Two aspects of the problem entail genuine difficulties in the analysis: the absence of representation formulas for the operator and the degenerate nature of the diffusion process. Our arguments circumvent these difficulties and lead to new regularity estimates. For bounded interface data, we prove the local boundedness of weak solutions and establish an estimate for their gradient in \(\textrm{BMO}\)-spaces. The latter implies solutions are of class \(C^{0,\mathrm{Log-Lip}}\) across the interface. Relaxing the assumptions on the data, we establish local Hölder continuity for the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed for the article.

References

  1. Adams, D.R.: Morrey Spaces. Lecture Notes in Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham (2015)

  2. Bao, E.S., Li, Y.Y., Yin, B.: Gradient estimates for the perfect conductivity problem. Arch. Ration. Mech. Anal. 193(1), 195–226 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bao, E.S., Li, Y.Y., Yin, B.: Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions. Commun. Partial Differ. Equ. 35(11), 1982–2006 (2010)

    Article  MathSciNet  Google Scholar 

  4. Baroni, P.: Riesz potential estimates for a general class of quasilinear equations. Calc. Var. Partial Differ. Equ. 53(3–4), 803–846 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bonnetier, E., Vogelius, M.: An elliptic regularity result for a composite medium with “touching’’ fibres of circular cross-section. SIAM J. Math. Anal. 31(3), 651–677 (2000)

    Article  MathSciNet  Google Scholar 

  6. Borsuk, M.V.: A priori estimates and solvability of second order quasilinear elliptic equations in a composite domain with nonlinear boundary condition and conjugacy condition. Trudy Mat. Inst. Steklov. 103, 15–50 (1968)

    MathSciNet  Google Scholar 

  7. Borsuk, M.V.: Transmission Robin problem for singular \(p(x)-\)Laplacian equation in a cone. Electron. J. Qual. Theory Differ. Equ. 93, 17 (2019)

    MathSciNet  Google Scholar 

  8. Borsuk, M.V.: Transmission problems for elliptic second-order equations in non-smooth domains. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2010)

  9. Briane, M., Capdeboscq, Y., Nguyen, L.: Interior regularity estimates in high conductivity homogenisation and application. Arch. Ration. Mech. Anal. 207(1), 75–137 (2013)

    Article  MathSciNet  Google Scholar 

  10. Caffareli, L., Soria-Carro, M., Stinga, P.R.: Regularity for \(C^{1,\alpha }\) interface transmission problems. Arch. Ration. Mech. Anal. 240(1), 265–294 (2021)

    Article  MathSciNet  Google Scholar 

  11. Campanato, S.: Sul problema di M. Picone relativo all’equilibrio di un corpo elastico incastrato. Ricerche Mat. 6, 125–149 (1957)

    MathSciNet  Google Scholar 

  12. Campanato, S.: Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo dell’elasticità. I. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13(3), 223–258 (1959)

    MathSciNet  Google Scholar 

  13. Campanato, S.: Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo dell’elasticità. II. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13(3), 275–302 (1959)

    MathSciNet  Google Scholar 

  14. Cianchi, A.: Continuity properties of functions from Orlicz-Sobolev spaces and embedding theorems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23(4), 575–608 (1996)

    MathSciNet  Google Scholar 

  15. De Filippis, C.: Quasiconvexity and partial regularity via nonlinear potentials. J. Math. Pures Appl. 9(163), 11–82 (2022)

    Article  MathSciNet  Google Scholar 

  16. De Filippis, C., Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch. Ration. Mech. Anal. 242(2), 973–1057 (2021)

    Article  MathSciNet  Google Scholar 

  17. De Filippis, C., Mingione, G.: Nonuniformly elliptic Schauder theory. Invent. Math. 234, 1109–1196 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dong, H.: A simple proof of regularity for \(C^{1,\alpha }\) interface transmission problems. Ann. Appl. Math. 37(1), 22–30 (2021)

    Article  MathSciNet  Google Scholar 

  19. Duzaar, F., Mingione, G.: Gradient estimates via linear and nonlinear potentials. J. Funct. Anal. 259(11), 2961–2998 (2010)

    Article  MathSciNet  Google Scholar 

  20. Duzaar, F., Mingione, G.: Gradient estimates via non-linear potentials. Am. J. Math. 133(4), 1093–1149 (2011)

    Article  MathSciNet  Google Scholar 

  21. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing, River Edge (2003)

    Book  Google Scholar 

  22. Il’in, V.A., Šišmarev, I.A.: The method of potentials for the problems of Dirichlet and Neumann in the case of equations with discontinuous coefficients. Sibirsk. Mat. Ž. 2, 46–58 (1961)

    MathSciNet  Google Scholar 

  23. Kufner, A., John, O., Fučík, S.: Function spaces. Analysis. Noordhoff International Publishing, Leyden; Academia, Prague, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics (2010)

  24. Kuusi, T., Mingione, G.: Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207(1), 215–246 (2013)

    Article  MathSciNet  Google Scholar 

  25. Kuusi, T., Mingione, G.: The Wolff gradient bound for degenerate parabolic equations. J. Eur. Math. Soc. (JEMS) 16(4), 835–892 (2014)

    Article  MathSciNet  Google Scholar 

  26. Kuusi, T., Mingione, G.: Guide to nonlinear potential estimates. Bull. Math. Sci. 4(1), 1–82 (2014)

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  27. Li, Y.Y., Nirenberg, L.: Estimates for elliptic systems from composite material. Comm. Pure Appl. Math., 56(7):892–925, 2003. Dedicated to the memory of Jürgen K. Moser

  28. Li, Y.Y., Vogelius, M.: Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153(2), 91–151 (2000)

    Article  MathSciNet  Google Scholar 

  29. Lieberman, G.: The natural generalisation of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16(2–3), 311–361 (1991)

    Article  Google Scholar 

  30. Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. (JEMS) 13(2), 459–486 (2011)

    Article  MathSciNet  Google Scholar 

  31. Mingione, G.: Nonlinear measure data problems. Milan J. Math. 79(2), 429–496 (2011)

    Article  MathSciNet  Google Scholar 

  32. Picone, M.: Sur un problème nouveau pour l’équation linéaire aux dérivées partielles de la théorie mathématique classique de l’élasticité, pp. 9–11. In Colloque sur les équations aux dérivées partielles, CBRM, Bruxelles (1954)

    Google Scholar 

  33. Schechter, M.: A generalisation of the problem of transmission. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14(3), 207–236 (1960)

    MathSciNet  Google Scholar 

  34. Šeftel’, Z.G.: Estimates in \(L_{p}\) of solutions of elliptic equations with discontinuous coefficients and satisfying general boundary conditions and conjugacy conditions. Soviet Math. Dokl. 4, 321–324 (1963)

    MathSciNet  Google Scholar 

  35. Serrin, J.: Local behaviour of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)

    Article  MathSciNet  Google Scholar 

  36. Soria-Carro, M., Stinga, P.R.: Regularity of viscosity solutions to fully nonlinear elliptic transmission problems. Adv. Math. 435, 109353 (2023)

    Article  MathSciNet  Google Scholar 

  37. Stampacchia, G.: Su un problema relativo alle equazioni di tipo ellittico del secondo ordine. Ricerche mat. 5, 3–24 (1956)

    MathSciNet  Google Scholar 

  38. Zygmund, A.: Trigonometric Series. II, vol. I. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Acknowledgements

The authors thank Paolo Baroni and Giuseppe Mingione for their insightful comments on the material in the paper.

Funding

EP is partially supported by FAPERJ (grants E26/200.002/2018 and E26/201.390/2021). JMU is partially supported by the King Abdullah University of Science and Technology (KAUST). All authors are partially supported by the Centre for Mathematics of the University of Coimbra (funded by the Portuguese Government through FCT/MCTES, https://doi.org/10.54499/UIDB/00324/2020).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the article.

Corresponding author

Correspondence to José Miguel Urbano.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare relevant to the article’s content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianca, V., Pimentel, E.A. & Urbano, J.M. BMO-regularity for a degenerate transmission problem. Anal.Math.Phys. 14, 9 (2024). https://doi.org/10.1007/s13324-023-00867-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00867-x

Keywords

Mathematics Subject Classification

Navigation