Skip to main content
Log in

Study of Cryostructuring of Polymer System. 66. Properties and Microstructure of Poly(vinyl alcohol) Cryogels Formed in Frozen Dimethyl Sulfoxide with Additives of Urea and Then Hydrated by Replacing Organic Medium with Water

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

“Primary” poly(vinyl alcohol) (PVA) cryogels have been obtained by cryogenic processing (freezing at –21.6°C for 12 h followed by defrosting via heating to 20°C at a rate of 0.03°C/min) of a 100 g/L solution of PVA in dimethyl sulfoxide (DMSO) in the absence and presence of urea (2 or 4 mol/L), which exhibits kosmotropic properties in such a medium. Subsequent hydration of the cryogels by replacing DMSO with water causes a decrease in the volume and weight of the samples, as well as leads to a significant increase in the elasticity modulus of resulting “secondary” cryogels. The absolute magnitude of such effects depends both on the concentration of urea in an initial PVA solution and on the volume ratio between gel samples and an aqueous extractant during their hydration. Using optical microscopy, it has been found that the presence of urea in the initial DMSO polymer solution in a concentration close to the limit of its solubility in such a medium induces the formation of a gel matrix with a wide-pore morphology. Since high-modulus secondary PVA cryogels are of great interest as materials for biomedical applications, the possibility of their functioning as carriers of drug delivery systems has been assessed in the work. Ibuprofen sodium salt has been used as a model drug. The analysis of the release kinetics of this substance within the framework of the Weibull function has been employed to show that the dynamic hydrogen bonding of its carboxylate groups with the hydroxyl groups of PVA decelerates the release of the drug from the polymer carrier, i.e., prolongs the release process. At the same time, the rate of the process depends on the urea content in the initial polymer solution most likely due to microstructural differences between the polymer phases of the macropore walls in the cryogel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Nambu, M., Rubber-like poly(vinyl alcohol) gel, Kobunshi Ronbunshu, 1990, vol. 47, pp. 695–703 (In Japanese). https://doi.org/10.1295/koron.47.695

  2. Peppas, N.A. and Stauffer, S.R., Reinforced uncrosslinked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes: A short review, J. Controlled Release, 1991, vol. 16, no. 3, pp. 305–310. https://doi.org/10.1016/0168-3659(91)90007-Z

    Article  CAS  Google Scholar 

  3. Lozinsky, V.I., Cryotropic gelation of poly(vinyl alcohol) solutions, Russ. Chem. Revs., 1998, vol. 67, no. 7, pp. 573–586. https://doi.org/10.1070/RC1998V067N07ABEH000399

    Article  Google Scholar 

  4. Hassan, C.M. and Peppas, N.A., Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods, Adv. Polym. Sci., 2000, vol. 153, pp. 37–65. https://doi.org/10.1007/3-540-46414-X_2

    Article  CAS  Google Scholar 

  5. Gutiérrez, M.C., Aranaz, I., Ferrer, M.L., and del Monte, F., Production and properties of poly(vinyl alcohol) cryogels: Recent developments, in Macroporous Polymers: Production, Properties and Biological/Biomedical Applications, Mattiasson, B., Kumar, A., and Galaev, I., Eds., Boca Raton, FL, USA: CRC Press, 2010, pp. 83–115. https://doi.org/10.1201/9781420084627

  6. Gun’ko, V.M., Savina, I.N., and Mikhalovsky, S.V., Cryogels: Morphological, structural and adsorption characterization, Adv. Colloid Interface Sci., 2013, vols. 187–188, pp. 1–46. https://doi.org/10.1016/j.cis.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  7. Adelnia, H., Ensandoost, R., Moonshi, S.S., Gavgani, J.N., Vasafi, E.I., and Ta, H.T., Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future, Eur. Polym. J., 2022, vol. 164, p. 110974. https://doi.org/10.1016/j.eurpolymj.2021.110974

    Article  CAS  Google Scholar 

  8. Rogozhin, S.V., Lozinsky, V.I., Vainerman, E.S., Domotenko, L.V., Mamtsis, A.M., Ivanova, S.A., Shtil’man, M.I., and Korshak, V.V., Noncovalent cryostructurization in polymer systems, Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 1, pp. 129–133.

    CAS  Google Scholar 

  9. Lozinsky, V.I., Vainerman, E.S., Domotenko, L.V., Mamtsis, A.M., Titova, E.F., Belavtseva, E.M., and Rogozhin, S.V., Study of cryostructurization of polymer systems. VII. Structure formation under freezing of poly(vinyl alcohol) aqueous solutions, Colloid Polym. Sci., 1986, vol. 264, pp. 19–24. https://doi.org/10.1007/BF01410304

    Article  CAS  Google Scholar 

  10. Mori, Y., Tokura, H., and Yoshikawa, M., Properties of hydrogels synthesized by freezing and thawing aqueous poly(vinyl alcohol) solutions and their applications, J. Mater. Sci., 1997, vol. 32, pp. 491–496. https://doi.org/10.1023/A:1018586307534

    Article  CAS  Google Scholar 

  11. Lozinsky, V.I., Damshkaln, L.G., Shaskol’skii, B.L., Babushkina, T.A., Kurochkin, I.N., and Kurochkin, I.I., Study of cryostructuring of polymer systems. 27. Physicochemical properties of poly(vinyl alcohol) cryogels and features of their macroporous morphology, Colloid J., 2007, vol. 69, no. 6, pp. 747–764. https://doi.org/10.1134/S1061933X07060117

    Article  CAS  Google Scholar 

  12. Lozinsky, V.I., Damshkaln, L.G., Kurochkin, I.N., and Kurochkin, I.I., Study of cryostructuring of polymer systems. 28. Physicochemical and morphological properties of poly(vinyl alcohol) cryogels formed via multiple freezing-thawing technique, Colloid J., 2008, vol. 70, no. 2, pp. 189–198. https://doi.org/10.1134/S1061933X08020117

    Article  CAS  Google Scholar 

  13. Zhang, H., Zhang, F., and Wu, J., Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique, React. Func. Polym., 2013, vol. 73, no. 7, pp. 923–928. https://doi.org/10.1016/j.reactfunctpolym.2012.12.014

    Article  CAS  Google Scholar 

  14. Lozinsky, V.I. and Okay, O., Basic principles of cryotropic gelation, Adv. Polym. Sci., 2014, vol. 263, pp. 49–101. https://doi.org/10.1007/978-3-319-05846-7_2

    Article  CAS  Google Scholar 

  15. Lozinsky, V.I., Cryostructuring of polymeric systems. 55. Retrospective view on the more than 40-years studies performed in the A.N. Nesmeyanov Institute of Organoelement Compounds with respect of the cryostructuring processes in polymeric systems, Gels, 2020, vol. 6, no. 3, p. 29. https://doi.org/10.3390/gels6030029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lozinsky, V.I., Vakula, A.V., and Zubov, A.L., Application of poly(vinyl alcohol) cryogels in biotechnology. IV. Literature data overview, Soviet Biotechnology, 1992, no. 4, pp. 1–11.

  17. Varfolomeev, S.D., Rainina, E.I., and Lozinsky, V.I., Cryoimmobilized enzymes and cells in organic synthesis, Pure Appl. Chem., 1992, vol. 64, no. 8, pp. 1193–1196. https://doi.org/10.1351/pac199264081193

    Article  CAS  Google Scholar 

  18. Lozinsky, V.I. and Plieva, F.M., Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments, Enzyme Microb. Technol., 1998, vol. 23, nos. 3–4, pp. 227–242. https://doi.org/10.1016/S0141-0229(98)00036-2

    Article  CAS  Google Scholar 

  19. Lozinsky, V.I., Plieva, F.M., Galaev, I.Y., and Mattiasson, B., The potential of polymeric cryogels in bioseparation, Bioseparation, 2001, vol. 10, pp. 163–188. https://doi.org/10.1023/A:1016386902611

    Article  CAS  PubMed  Google Scholar 

  20. Lozinsky, V.I., Galaev, I.Y., Plieva, F.M., Savina, I.N., Jungvid, H., and Mattiasson, B., Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 2003, vol. 21, no. 10, pp. 445–451. https://doi.org/10.1016/j.tibtech.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  21. Lozinsky, V.I., What new opportunities the use of diverse polymeric cryogels opens for the immobilization of molecules and cells, Hemijska Industrija (Belgrade), 2004, vol. 58, pp. 111–115.

    Google Scholar 

  22. Mattiasson, B., Cryogels for biotechnological applications, Adv. Polym. Sci., 2014, vol. 263, pp. 245–282. https://doi.org/10.1007/978-3-319-05846-7_7

    Article  CAS  Google Scholar 

  23. Berillo, D., Al-Jwaid, A., and Caplin, J., Polymeric materials used for immobilisation of bacteria for the bioremediation of contaminants in water, Polymers, 2021, vol. 13, no. 7, p. 1073. https://doi.org/10.3390/polym13071073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lazzeri, L., Progress in bioartificial polymeric materials, Trends Polym. Sci., 1996, vol. 4, no. 8, pp. 249–252.

    CAS  Google Scholar 

  25. Chu, K.C. and Rutt, B.K., Poly(vinyl alcohol) cryogel: An ideal phantom material for MR studies of arterial flow and elasticity, Magn. Reson. Med., 1997, vol. 37, no. 2, pp. 314–319. https://doi.org/10.1002/mrm.1910370230

    Article  CAS  PubMed  Google Scholar 

  26. Hoskins, P.R., Simulation and validation of arterial ultrasound imagining and blood flow, Ultrasound Med. Biol., 2008, vol. 34, no. 5, pp. 693–717. https://doi.org/10.1016/j.ultrasmedbio.2007.10.017

    Article  PubMed  Google Scholar 

  27. Ghanbari, H., Viatage, H., Kidane, A.G., Burriesci, G., Tavakoli, M., and Seifalian, A.M., Polymeric heart valves: New materials, emerging hopes, Trends Biotechnol., 2009, vol. 27, no. 6, pp. 359–367. https://doi.org/10.1016/j.tibtech.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  28. Alves, M.H., Jensen, B.E.B., Smith, A.A.A., and Zelikin, A.N., Poly(vinyl alcohol) physical hydrogels: New vista on a long serving biomaterial, Macromol. Biosci., 2011, vol. 11, no. 10, pp. 1293–1313. https://doi.org/10.1002/mabi.201100145

    Article  CAS  PubMed  Google Scholar 

  29. Baker, M.I., Walsh, S.P., Schwartz, Z., and Boyan, B.D., A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications, J. Biomed. Mater. Res. B., 2012, vol. 100, no. 5, pp. 1451–1457. https://doi.org/10.1002/jmb.b32694

    Article  Google Scholar 

  30. Gajra, B., Pandya, S.S., Vidyasagar, G., Rabari, H., Dedania, R.R., and Rao, S., Poly(vinyl alcohol) hydrogel and its pharmaceutical and biomedical applications: A review, Int. J. Pharm. Res., 2012, vol. 4, no. 2, pp. 20–26.

    CAS  Google Scholar 

  31. Maiolo, A.S., Amado, M.N., Gonzalez, J.S., and Alvarez, V.A., Development and characterization of poly (vinyl alcohol) based hydrogels for potential use as an articular cartilage replacement, Mater. Sci. Eng. C, 2012, vol. 32, no. 6, pp. 1490–1495. https://doi.org/10.1016/j.msec.2012.04.030

    Article  CAS  Google Scholar 

  32. Iatridis, J.C., Nicoll, S.B., Michalek, A.J., Walter, B.A., and Gupta, M.S., Role of biomechanics in intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair?, Spine J., 2013, vol. 13, no. 3, pp. 243–262. https://doi.org/10.1016/j.spinee.2012.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wan, W., Bannerman, A.D., Yang, L., and Mak, H., Poly(vinyl alcohol) cryogels for biomedical applications, Adv. Polym. Sci., 2014, vol. 263, pp. 283–321. https://doi.org/10.1007/978-3-319-05846-7_8

    Article  CAS  Google Scholar 

  34. Teixeira, L.S.M., Patterson, J., and Luyten, F.P., Skeletal tissue regeneration: Where can hydrogels play a role?, Int. Orthop., 2014, vol. 38, pp. 1861–1876. https://doi.org/10.1007/s00264-014-2402-2

    Article  Google Scholar 

  35. Beddoes, C.M., Whitehouse, M.R., Briscoe, W.H., and Su, B., Hydrogels as a replacement materials for damaged articular hyaline cartilage, Materials, 2016, vol. 9, no. 6, p. 443. https://doi.org/10.3390/ma9060443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar, A., and Han, S.S., PVA-based hydrogels for tissue engineering: A review, Int. J. Polym. Mater. Polym. Biomater., 2017, vol. 66, no. 4, pp. 159–182. https://doi.org/10.1080/00914037.2016.1190930

    Article  CAS  Google Scholar 

  37. Timofejeva, A., D’Este, M., and Loca, D., Calcium phosphate/polyvinyl alcohol composite hydrogels: A review on the freeze-thaw synthesis approach and applications in regenerative medicine, Eur. Polym. J., 2017, vol. 95, pp. 547–565. https://doi.org/10.1016/j.eurpolymj.2017.08.048

    Article  CAS  Google Scholar 

  38. Teodorescu, M., Bercea, M., and Morariu, S., Biomaterials of poly(vinyl alcohol) and natural polymers, Polym. Rev., 2018, vol. 58, no. 2, pp. 247–287. https://doi.org/10.1080/15583724.2017.1403928

    Article  CAS  Google Scholar 

  39. Memic, A., Colombani, T., Eggermont, L.J., Rezaeeyazdi, M., Steingold, J., Rogers, Z.J., Navare, K.J., Mohammed, H.S., and Bencherif, S.A., Latest advances in cryogel technology for biomedical applications, Adv. Ther., 2019, vol. 2, no. 4, p. 1800114. https://doi.org/10.1002/adtp.201800114

    Article  Google Scholar 

  40. Xiang, J., Shen, L., and Hong, Y., Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation, Eur. Polym. J., 2020, vol. 130, p. 109609. https://doi.org/10.1016/j.eurpolymj.2020.109609

    Article  CAS  Google Scholar 

  41. Rivera-Hernández, G., Antunes-Ricardo, M., Martínez-Morales, P., and Sánchez, L., Polyvinyl alcohol based-drug delivery systems for cancer treatment, Int. J. Pharm., 2021, vol. 600, p. 120478. https://doi.org/10.1016/j.ijpharm.2021.120478

    Article  CAS  PubMed  Google Scholar 

  42. Aderibigbe, B.A., Hybrid-based wound dressings: Combination of synthetic and biopolymers, Polymers, 2022, vol. 14, no. 18, p. 3806. https://doi.org/10.3390/polym14183806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kolosova, O.Yu., Shaikhaliev, A.I., Krasnov, M.S., Bondar, I.M., Sidorskii, E.V., Sorokina, E.V., and Lozinsky, V.I., Cryostructuring of polymeric systems. 64. Preparation and properties of poly(vinyl alcohol)-based cryogels loaded with antimicrobial drugs and assessment of the potential of such gel materials to perform as the gel implants for treatment of infected wounds, Gels, 2023, vol. 9, no. 2, p. 113. https://doi.org/10.3390/gels9020113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Omidian, H., Chowdhury, S.D., and Babanejad, N., Cryogels: Advancing biomaterials for transformative biomedical applications, Pharmaceutics, 2023, vol. 15, no. 7, p. 1836. https://doi.org/10.3390/pharmaceutics15071836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hyon, S.H., Cha, W.I., and Ikada, Y., Preparation of transparent poly(vinyl alcohol) hydrogel, Polym. Bull., 1989, vol. 22, pp. 119–122. https://doi.org/10.1007/BF00255200

    Article  CAS  Google Scholar 

  46. Trieu, H.H., and Qutubuddin, S., Polyvinyl alcohol hydrogels I. Microscopic structure by freeze-etching and critical point drying techniques, Colloid Polym. Sci., 1994, vol. 272, pp. 301–309. https://doi.org/10.1007/BF00655501

    Article  CAS  Google Scholar 

  47. Trieu, H.H., and Qutubuddin, S., Poly(vinyl alcohol) hydrogels. 2. Effects of processing parameters on structure and properties, Polymer, 1995, vol. 36, no. 13, pp. 2531–2539. https://doi.org/10.1016/0032-3861(95)91198-G

    Article  CAS  Google Scholar 

  48. Masri, C., Chagnon, G., and Favier, D., Influence of processing parameters on the macroscopic mechanical behavior of PVA hydrogels, Mater. Sci. Eng. Part C, 2017, vol. 75, pp. 769–776. https://doi.org/10.1016/j.msec.2017.02.045

    Article  CAS  Google Scholar 

  49. Lozinsky, V.I., Kolosova, O.Y., Michurov, D.A., Dubovik, A.S., Vasil’ev, V.G., and Grinberg, V.Y., Cryostructuring of polymeric systems. 49. Unexpected “kosmotropic-like” impact of organic chaotropes on freeze–thaw-induced gelation of PVA in DMSO, Gels, 2018, vol. 4, no. 4, p. 81. https://doi.org/10.3390/gels4040081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bakeeva, I.V., Orlova, M.A., and Lozinsky, V.I., Poly(vinyl alcohol) cryogels formed from polymer solutions in dimethyl sulfoxide with tetramethoxysilane additives, Fine Chem. Technol., 2019, vol. 14, pp. 41–50. https://doi.org/10.32362/2410-6593-2019-14-2-41-50

    Article  CAS  Google Scholar 

  51. Pritchard, J.G., Poly(vinyl alcohol): Basic Properties and Uses, London: Gordon & Breach Science Publishers, 1970, p. 139.

    Google Scholar 

  52. Masuda, K. and Horii, F., CP/MAS 13C NMR analyses of the chain conformation and hydrogen bonding for frozen poly(vinyl alcohol) solutions, Macromolecules, 1998, vol. 31, no. 17, pp. 5810–5817. https://doi.org/10.1021/ma9801265

    Article  CAS  Google Scholar 

  53. Ricciardi, R., Auriemma, F., Rosa, C.D., and Laupretre, F., X-ray diffraction analysis of poly(vinyl alcohol) hydrogels obtained by freezing and thawing techniques, Macromolecules, 2004, vol. 37, no. 5, pp. 1921–1927. https://doi.org/10.1021/ma035663q

    Article  CAS  Google Scholar 

  54. Ricciardi, R., Auriemma, F., Gaillet, C., Rosa, C.D., and Laupretre, F., Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques, Macromolecules, 2004, vol. 37, no. 25, pp. 9510–9516. https://doi.org/10.1021/ma048418v

    Article  CAS  Google Scholar 

  55. Kolosova, O.Yu., Kurochkin, I.N., Kurochkin, I.I., and Lozinsky, V.I., Cryostructuring of polymeric systems. 48. Influence of organic chaotropes and kosmotropes on the cryotropic gel-formation of aqueous poly(vinyl alcohol) solutions, Eur. Polym. J., 2018, vol. 102, pp. 169–177. https://doi.org/10.1016/j.eurpolymj.2018.03.010

    Article  CAS  Google Scholar 

  56. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: John Wiley and Sons, 1972.

    Google Scholar 

  57. Lozinsky, V.I., Leonova, I.M., Ivanov, R.V., and Bakeeva, I.V., A study of cryostructuring of polymer systems. 46. Physicochemical properties and microstructure of poly(vinyl alcohol) cryogels formed from polymer solutions in mixtures of dimethyl sulfoxide with low-molecular-mass alcohols, Colloid J., 2017, vol. 79, no. 6, pp. 788–796. https://doi.org/10.1134/S1061933X17060114

    Article  CAS  Google Scholar 

  58. Dimethyl Sulfoxide Solubility Data, Slidell, LA, USA: Gaylord Chemical Company, Bulletin 102, 2014.

  59. https://pubchem.ncbi.nlm.nih.gov/compound/Ibuprofen-sodium.

  60. Weibull, W., A statistical distribution function of wide applicability, J. Appl. Mechanics, 1951, vol. 18, pp. 293–297.

    Article  Google Scholar 

  61. Papadopoulou, V., Kosmidis, K., Vlachou, M., and Macheras, P., On the use of the Weibull function for the discernment of drug release mechanisms, Int. J. Pharm., 2006, vol. 309, nos. 1–2, pp. 44–50. https://doi.org/10.1016/j.ijpharm.2005.10.044

    Article  CAS  PubMed  Google Scholar 

  62. Kolosova, O.Yu., Karelina, P.A., Vasil’ev, V.G., Grinberg, V.Ya., Kurochkin, I.I., Kurochkin, I.N., and Lozinsky, V.I., Cryostructuring of polymeric systems. 58. Influence of the H2N–(CH2)n–COOH-type amino acid additives on formation, properties, microstructure and drug release behaviour of poly(vinyl alcohol) cryogels, React. Funct. Polym., 2021, vol. 167, p. 105010. https://doi.org/10.1016/j.reactfunctpolym.2021.105010

    Article  CAS  Google Scholar 

  63. Pimentel, G. and McClellan, A.I., Hydrogen Bond, San Francisco: W.H. Freeman & Co., 1960; M.: Mir, 1964.

    Google Scholar 

Download references

Funding

This work was carried out within the framework of the State order no. 075-03-2023-642 of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Lozinsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michurov, D.A., Kolosova, O.Y. & Lozinsky, V.I. Study of Cryostructuring of Polymer System. 66. Properties and Microstructure of Poly(vinyl alcohol) Cryogels Formed in Frozen Dimethyl Sulfoxide with Additives of Urea and Then Hydrated by Replacing Organic Medium with Water. Colloid J 85, 949–960 (2023). https://doi.org/10.1134/S1061933X23600665

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600665

Keywords:

Navigation