Skip to main content
Log in

Modification of the Stefan’s Rule for the Surface Tension Coefficients of Liquids

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A modification of the “Stefan’s rule” for the surface tension coefficients of liquids has been proposed, with the modification consisting in choosing a liquid as a system of comparison with respect to its surface. An expression for the surface tension coefficients has been derived and employed to interpret their temperature dependences for a number of molecular liquids with different physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Kalova, J. and Mareš, R., Temperature dependence of the surface tension of water, including the supercooled region, Int. J. Thermophys., 2022, vol. 43, no. 10, p. 154. https://doi.org/10.1007/s10765-022-03077-y

    Article  CAS  Google Scholar 

  2. Uddin, M.S., Gosha, R.C., and Bhuiyan, G.M., Investigation of surface tension, viscosity and diffusion coefficients for liquid simple metals, J. Non-Cryst. Solids, 2018, vol. 499, pp. 426–433. https://doi.org/10.1016/j.jnoncrysol.2018.07.014

    Article  CAS  Google Scholar 

  3. Nikoofard, H., Kalantar, Z., et al., Calculation of self-diffusion coefficient and surface tension of liquid alkali metals using square-well fluid, Fluid Phase Equilib., 2019, vol. 487, pp. 1–7. https://doi.org/10.1016/j.fluid.2019.01.007

    Article  CAS  Google Scholar 

  4. Cachadina, I., Hernandez, A., and Mulero, A., Surface tension of esters. Temperature dependence of the influence parameter in density gradient theory with Peng−Robinson equation of state, Case Studies in Thermal Engineering, 2022, vol. 36, p. 102193. https://doi.org/10.1016/j.csite.2022.102193

    Book  Google Scholar 

  5. Chulkova, E.V., Emelyanenko, K.A., Emelyanen-ko, A.M., and Boinovich, L.B., Elimination of wetting study flaws in unsaturated vapors based on Laplace fit parameters, Surf. Innovations, 2022, vol. 10, no. 1, pp. 21–24. https://doi.org/10.1680/jsuin.21.00012

    Article  Google Scholar 

  6. Vvedenskii, O.G., Mikutov, A.P., Kashirin, N.V., and Sevryugin, V.A., RF Patent 2711148, Method for Determining the Surface Tension Coefficient of a Liquid, 2020.

  7. Roldugin, V.I., Fizikokhimiya poverkhnosti (Physicochemistry of the Surface), Dolgoprudny: Intellekt, 2008.

  8. Rowlinson, J.S. and Widom, B., Molecular Theory of Capillarity, Oxford: Clarendon Press, 1982.

    Google Scholar 

  9. Summ, B.D., New correlations of surface tension with the volumetric properties of liquids, Vestn. Mosk. Univ., Ser. 2: Khim., 1999, vol. 40, no. 6, pp. 400–405.

    CAS  Google Scholar 

  10. Vavruch, I., Stefan’s Rule as a consequence of cohesive forces, Colloids Surf., 1985, vol. 15, pp. 57−62. https://doi.org/10.1016/0166-6622(85)80055-X

    Article  CAS  Google Scholar 

  11. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya Khimiya (Colloid Chemistry), Moscow: Vysshaya Shkola, 2004.

  12. Lu, H.M. and Jiang, Q., Surface tension and its temperature coefficient for liquid metals, J. Phys. Chem., 2005, vol. 109, no. 32, pp. 15463−15468. https://doi.org/10.1021/jp0516341

    Article  CAS  Google Scholar 

  13. Kou, H., Li, W., Zhang, X., and Xu, N. et al., Temperature-dependent coefficient of surface tension prediction model without arbitrary parameters, Fluid Phase Equilib., 2018, vol. 484, pp. 53−59. https://doi.org/10.1016/j.fluid.2018.11.024

    Article  Google Scholar 

  14. Gibbs, D.V., Termodinamika. Statisticheskaya mekha-nika (Thermodynamics. Statistical Mechanics), Moscow: Nauka, 1982.

  15. Frenkel, Ya.I., Kinetic Theory of Liquids, New York, NY: Dover, 1955.

    Google Scholar 

  16. Skirda, V.D., Razvitie gradientnogo YAMR v issledovaniyakh struktury i dinamiki slozhnykh molekulyarnykh sistem (Development of Gradient NMR in the Study of the Structure and Dynamics of Complex Molecular Systems), Skirda, et al., Eds., Almetyevsk, 2021.

  17. Sevryugin, V.A. and Skirda, V.D., Viscosity of molecular Newtonian liquids, Colloid J., 2021, vol. 83, no. 4, pp. 490–499. https://doi.org/10.1134/S1061933X21040104

    Article  CAS  Google Scholar 

  18. Bobylev, V.N., Fizicheskie svoistva naibolee izvestnykh khimicheskikh veshchestv (Physical Properties of the Most Known Chemical Substances), Moscow: Ross, Khim. Tekhnol. Univ., 2004.

  19. Fizicheskie svoistva naibolee izvestnykh khimicheskikh veshchestv (Brief Reference Book of Physico-Chemical Quantities), Ravdel, A.A. and A.M. Ponomare-va, A.M., Eds., Leningrad: Khimiya, 1983, 8th ed.

    Google Scholar 

  20. Skryshevskiy, A.F., Strukturnyi analiz zhidkostei (Structural Analysis of Liquids), Moscow: Vysshaya Shkola, 1971.

Download references

Funding

The work was carried out within the framework of the state assignment in the field of scientific activity issued to Kazan Federal University FZSM-2023-0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sevryugin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevryugin, V.A., Skirda, V.D. Modification of the Stefan’s Rule for the Surface Tension Coefficients of Liquids. Colloid J 85, 996–1001 (2023). https://doi.org/10.1134/S1061933X23600616

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600616

Keywords:

Navigation