Skip to main content
Log in

Mechanochemical Synthesis of Ethoxyaminohumic Acids and Surface-Active Properties of Their Solutions at Solution–Air Interface

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Ethoxyamine derivatives of humic acids have been obtained by mechanochemical synthesis via the simultaneous interaction of humic acids with poly(ethylene glycol) (PEG-6000 and PEG-1500) and an aminating reagent (urea, hydroperitum, or cyanoguanidine) in a vibrating apparatus. Reaction products have been characterized by IR spectroscopy, acid–base potentiometric titration, and viscometry. Tensiometric and rheological characteristics of the surface layers of solutions of salts of the synthesized derivatives of humic acids have been studied by the pendant drop and oscillating pendant drop methods. The solutions of the salts of ethoxyaminohumic acids have been found to exhibit a pronounced surface activity at the air–water interface. The experimental dependences of the viscoelastic modulus on the surface pressure and the concentration of the solutions of ethoxyaminohumic acid salts are in satisfactory agreement with the functions calculated in terms of the theoretical model of bimolecular adsorption. The presence of amino groups in the structure of ethoxyaminohumic acids predetermines their high solubility in the acidic pH region. The simultaneous incorporation of ethoxy and amino groups into humic acid macromolecules makes it possible to obtain a novel type of surfactants, which combine three functions, i.e., the functions of anionic, cationic, and nonionic surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Yang, F. and Antonietti, M., The sleeping giant: A polymer view on humic matter in synthesis and applications, Prog. Polym. Sci., 2020, vol. 100, p. 101182. https://doi.org/10.1016/j.progpolymsci.2019.101182

    Article  CAS  Google Scholar 

  2. Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, Formation), Ermakov, E.I., Ed., St. Petersburg: St.-Peterb. Univ., 2004.

    Google Scholar 

  3. Piccolo, A., The supramolecular structure of humic substances, Soil Sci., 2001, vol. 166, no. 11, pp. 810–832. https://doi.org/10.1097/00010694-200111000-00007

    Article  CAS  Google Scholar 

  4. Khil’ko, S.L., Kovtun, A.I., Fainerman, V.B., and Rybachenko, V.I., Adsorption and rheological characteristics of humic acid salts at liquid−gas interfaces, Colloid J., 2010, vol. 72, no. 6, pp. 857–865. https://doi.org/10.1134/S1061933X10060189

    Article  CAS  Google Scholar 

  5. Mal’tseva, E.V., Yudina, N.V., Shekhovtsova, N.S., and Shilyaeva, L.P., Effect of mechanochemical modification on the surfactant and structural properties of humic and himatomelanic acids, Russ. J. Phys. Chem. A, 2017, vol. 91, no. 7, pp. 1273–1278. https://doi.org/10.1134/S0036024417070214

    Article  Google Scholar 

  6. Ivanov, A.A., Yudina, N.V., and Il’ina, A.A., Acid and ion exchange properties of humic acids in mechanically activated peats, Khim. Rastit. Syr’ya, 2010, no. 4, pp. 145–150.

  7. Savel’eva, A.V., Ivanov, A.A., and Yudina, N.V., Influence of structural characteristics of humic acids on the efficiency of interaction with polyvalent metal cations, Khim. Rastit. Syr’ya, 2015, no. 4, pp. 77–83. https://doi.org/10.14258/jcprm.201504713

  8. Spark, K.M., Wells, John D., and Johnson, Bruce B., The interaction of a humic acid with heavy metals, Aust. J. Soil Res., 1997, vol. 35, no. 1, pp. 89–102. https://doi.org/10.1071/S96008

    Article  CAS  Google Scholar 

  9. Erdogan, S., Baysal, A., Akba, O., and Hamamci, C., Interaction of metals with humic acid isolated from oxidized coal, Pol. J. Environ. Stud., 2007, vol. 16, no. 5, pp. 671–675.

    CAS  Google Scholar 

  10. Ai, Y., Zhao, C., Sun, L., Wang, X., and Liang, L., Coagulation mechanisms of humic acid in metal ions solution under different pH conditions: A molecular dynamics simulation, Sci. Total Environ., 2020, vol. 702, p. 135072. https://doi.org/10.1016/j.scitotenv.2019.135072

    Article  CAS  PubMed  Google Scholar 

  11. Chukov, S.N., Strukturno-funktsional’nye parametry organicheskogo veshchestva pochv v usloviyakh antropogennogo vozdeistviya (Structural and Functional Parameters of Soil Organic Matter under Anthropogenic Influence), St. Petersburg: St.-Peterb. Univ., 2001.

  12. Yakimenko, O.S. and Terekhova, V.A., Humic preparations and the assessment of their biological activity for certification purposes, Eurasian Soil Sc., 2011, vol. 44, no. 11, pp. 1222–1230. https://doi.org/10.1134/S1064229311090183

    Article  CAS  Google Scholar 

  13. Kulikova, N.A., Volikov, A.B., Filippova, O.I., Kholodov, V.A., Yaroslavtseva, N.V., Farkhodov, Y.R., Yudina, A.V., Roznyatovsky, V.A., Grishin, Y.K., Zhilkibayev, O.T., and Perminova, I.V., Modified humic substances as soil conditioners: Laboratory and field trials, Agronomy, 2021, vol. 11, no. 1, pp. 150–169. https://doi.org/10.3390/agronomy11010150

    Article  CAS  Google Scholar 

  14. Khil'ko, S.L., Efimova, I.V., and Smirnova, O.V., Antioxidant properties of humic acids from brown coal, Solid Fuel Chem., 2011, vol. 45, no. 6, pp. 367–371. https://doi.org/10.3103/S036152191106005X

    Article  CAS  Google Scholar 

  15. Berkovich, A.M., Application of humic and humic-like preparations in veterinary medicine and medicine, 2007. http://www.humipharm.ru/research/prim.pdf.

  16. Zhang, Ch. and Katayama, A., Humin as an electron mediator for microbial reductive dehalogenation, Environ. Sci. Technol., 2012, vol. 46, no. 12, pp. 6575–6583. https://doi.org/10.1021/es3002025

    Article  CAS  PubMed  Google Scholar 

  17. Wang, C., Cheng, T., Zhang, D., and Pan, X., Electrochemical properties of humic acid and its novel applications: A tip of the iceberg, Sci. Total Environ., 2023, vol. 863, p. 160755. https://doi.org/10.1016/j.scitotenv.2022.160755

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, L., Yuan, L., Zhao, B., Li, Y., and Lin, Z., Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions, PLoS One, 2019, vol. 14, no. 5, p. e0217469. https://doi.org/10.1371/journal.pone.0217469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kong, Y., Shen, J., Chen, Z., Kang, J., Fana, L., and Zhao, X., Influence of potassium permanganate pre-oxidation on the interaction of humic acid with cadmium/arsenic, RSC Adv., 2016, vol. 6, no. 4, pp. 3048–3057. https://doi.org/10.1039/c5ra22043b

    Article  CAS  Google Scholar 

  20. Platonov, V.V. and Lebedeva, G.F., Oxidation of humic acids of various origins with hydrogen peroxide in order to increase their biological activity, Uspekhi v Khimii i Khimicheskoi Tekhnologii, 2002, vol. 16, pp. 109–110.

  21. Yang, S., Zhang, B., Zhao, Y., and Chen, J.J., Determination of humic acid in loess by potassium permanganate oxidization flow-injection chemiluminescence method, Asian J. Chem., 2013, vol. 25, no. 7, pp. 3819–3822. https://doi.org/10.14233/ajchem.2013.13801

    Article  CAS  Google Scholar 

  22. Doskocil, L., Grasset, L., Valkova, D., and Pekar, M., Hydrogen peroxide oxidation of humic acids and lignite, Fuel, 2014, vol. 134, no. 118, pp. 406–413. https://doi.org/10.1016/j.fuel.2014.06.011

    Article  CAS  Google Scholar 

  23. Jin, P.K., Jin, X., Wang, X.C., and Bai, F., Effect of ozonation and hydrogen peroxide oxidation on the structure of humic acids and their removal, Adv. Mater. Res., 2012, vols. 610–613, pp. 1256–1259. https://doi.org/10.4028/www.scientific.net/AMR.610-613.1256

    Article  CAS  Google Scholar 

  24. Schnitzer, M., On permanganate oxidation of humic acid—a discussion, Geoderma, 1978, vol. 21, no. 3, pp. 239–243. https://doi.org/10.1016/0016-7061(78)90030-7

    Article  CAS  Google Scholar 

  25. Yuan, Y., Liu, J.P., Chen, Z., and Li, H.C., Extraction study of nitro humic acid from lignite by dry and wet process, Appl. Mech. Mater., 2013, vol. 483, pp. 119–123. https://doi.org/10.4028/www.scientific.net/AMM.483.119

    Article  CAS  Google Scholar 

  26. Syahren, A.M. and Wong, N.C., Extraction and chemical characteristics of nitrohumic acids from coals and composts, Journal of Tropical Agriculture and Food Science, 2008, vol. 36, no. 2, pp. 269–279.

    Google Scholar 

  27. Khil’ko, S.L., Rogatko, M.I., Makarova, R.A., and Semenova, R.G., Specific features of the formation of adsorption layers from products of mechanochemical modification of humic acids at a liquid–gas interface, Colloid J., 2020, vol. 82, no. 6, pp. 746–757. https://doi.org/10.1134/S1061933X2006006X

    Article  Google Scholar 

  28. Amirkhanova, A.K. and Akkulova, Z.G., Sintez i ionoobmennye svoistva aminoproizvodnykh okislennykh uglei, Khim. Interesakh Ustoich. Razvit., 2006, vol. 14, no. 3, pp. 231–235.

    CAS  Google Scholar 

  29. Khil'ko, S.L., Mechanochemical Sulfonation of Humic Acids, Donetsk: Donetsk. Nauch. Techn. Univ., 2011, no. 17(187), pp. 103–111. http://ea.donntu.ru/handle/123456789/3425.

  30. Ryabova, I.N., Mustafina, G.A., Akkulova, Z.G., and Satymbaeva, A.S., Surface-active properties of humic and sulfochlorohumic acids, Colloid J., 2009, vol. 71, no. 5, pp. 729–731. https://doi.org/10.1134/S1061933X09050226

    Article  CAS  Google Scholar 

  31. Karpyuk, L.A., Kalakin, A.A., Perminova, I.V., Ponomarenko, S.A., Muzafarov, A.M., Konstantinov, A.I., and Petrosyan, V.S., Preparation of methoxysilylhumic acid derivatives with the use of 3‑isocyanatopropyltrimethoxysilane, Moscow Univ. Chem. Bull., 2008, vol. 63, no. 6, pp. 326–332.

    Article  Google Scholar 

  32. Efanov, M.V. and Sartakov, M.P., Carboxymethylation of peat humic acids by a mechanochemical method, Solid Fuel Chem., 2020, vol. 54, no. 1, pp. 16–20. https://doi.org/10.3103/S0361521920010024

    Article  CAS  Google Scholar 

  33. Khil'ko, S.L., Semenova, R.G., Efimova, I.V., Smirnova, O.V., Berezhnoi, V.S., and Rybachenko, V.I., Acylation of humic acids, Solid Fuel Chem., 2015, vol. 49, no. 4, pp. 206–212. https://doi.org/10.3390/molecules23040753

    Article  CAS  Google Scholar 

  34. Yarkova, T.A., Chemical modification of humic acids by the introduction of indole-containing fragments, Solid Fuel Chem., 2011, vol. 45, no. 4, pp. 261–266. https://doi.org/10.3103/S0361521911040136

    Article  CAS  Google Scholar 

  35. Makarova, R.A., Semenova, R.G., Khil’ko, S.L., Rogatko, M.I., Nevecherya, O.I., and Khil’ko, A.S., Mechanochemical synthesis of ethoxylated derivatives of humic and aromatic acids, Vestn. Novgorod. Gos. Univ., 2020, no. 5(121), pp. 99–102. https://doi.org/10.34680/2076-8052.2020.5(121)

  36. Baláž, P., Achimovičová, M., Baláž, M., and Billik, P., Hallmarks of mechanochemistry: From nanoparticles to technology, Chem. Soc. Rev., 2013, vol. 42, no. 18, pp. 7571–7588. https://doi.org/10.1039/c3cs35468g

    Article  CAS  PubMed  Google Scholar 

  37. Pagola, S., Outstanding advantages, current drawbacks, and significant recent developments in mechanochemistry: A perspective view (Review), Crystals, 2023, vol. 13, pp. 124–157. https://doi.org/10.3390/cryst13010124

    Article  CAS  Google Scholar 

  38. Weidenthaler, C., In situ analytical methods for the characterization of mechanochemical reactions, Crystals, 2022, vol. 12, no. 3, pp. 345–361. https://doi.org/10.3390/cryst12030345

    Article  CAS  Google Scholar 

  39. Fundamental'nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Fundamentals of Mechanical Activation, Mechanosynthesis and Mechanochemical Technologies), Ava-kumov, E.G., Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2009.

    Google Scholar 

  40. Berlin, A.A. and Shaulov, A.Yu., Natural and artificial construction materials, Materialovedenie, 2005, no. 2, pp. 20–27.

  41. Boldyrev, V.V., Mechanochemistry and mechanical activation of solids, Russ. Chem. Rev., 2006, vol. 75, no. 3, pp. 177–189. https://doi.org/10.1070/RC2006v075n03ABEH001205

    Article  CAS  Google Scholar 

  42. Butyagin, P.Yu., Problems in mechanochemistry and prospects for its development, Russ. Chem. Rev., 2007, vol. 63, no. 12, pp. 965–976. https://doi.org/10.1070/RC1994v063n12ABEH000129

    Article  Google Scholar 

  43. Lyakhov, N.Z., Grigorieva, T.F., Barinova, A.P., and Vorsina, I.A., Mechanochemical synthesis of organic compounds and composites with their participation, Russ. Chem. Rev., 2010, vol. 79, no. 3, pp. 189–203. https://doi.org/10.1070/RC2010v079n03ABEH004115

    Article  CAS  Google Scholar 

  44. Dushkin, A.V., Potential of mechanochemical technology in organic synthesis and synthesis of new materials, Himiya v Interesah Ustoichivogo Razvitiya, 2004, vol. 12, pp. 251–273.

  45. Khrenkova, T.M., Mekhanokhimicheskaya aktivatsiya uglei (Mechanochemical Activation of Coals), Mosocw: Nedra, 1993.

  46. Ivanov, A.A., Yudina, N.V., and Lomovskii, O.I., The impact of mechanochemical activation on the composition and properties of humic acids in peats, Izv. Tomsk. Politekh. Univ., 2006, vol. 309, no. 5, pp. 73–77.

    Google Scholar 

  47. Khil’ko, S.L., Shelest, V.S., Makarova, R.A., Semenova, R.G., Rogatko, M.I., and Khil’ko, A.S., Mechanochemical synthesis of ethoxyaminohumic acids in a vibration apparatus, Vestn. Donetsk. Nats. Univ., Ser. A: Estestvennye Nauki, 2021, no. 1, pp. 160–165.

  48. Khil’ko, S.L., Shelest, V.S., Rogatko, M.I., Makarova, R.A., and Semenova, R.G., Solid-phase synthesis of ethoxyaminohumic acids and their properties, Vestn. Tversk. Univ., Ser.: Khim., 2022, no. 3(49), pp. 98–105. https://doi.org/10.26456/vtchem2022.3.12

  49. Sivakova, L.G., Lesnikova, N.P., Kim, N.M., and Rotova, G.M., Physicochemical properties of the humic substances of peat and brown coal, Solid Fuel Chem., 2011, vol. 45, no. 1, pp. 1–6. https://doi.org/10.3103/S0361521911010125

    Article  CAS  Google Scholar 

  50. Kawahigashi, M., Sumida, H., and Yamamoto, K., Size and shape of soil humic acids estimated by viscosity and molecular weight, J. Colloid Interface Sci., 2005, vol. 284, no. 2, pp. 463–469. https://doi.org/10.1016/j.jcis.2004.10.023

    Article  CAS  PubMed  Google Scholar 

  51. Baramboim, N.K., Mekhanokhimiya vysokomolekulyarnykh soedinenii (Mechanochemistry of High Molecular Weight Compounds), Moscow: Chemistry, 1978.

  52. Ravera, F., Liggieri, L., and Loglio, G., Rheology of surfactant adsorption layers, Progress in Colloid and Interface Science, Miller, R., Ed., Leiden, Boston: CRC Press, Brill, 2009, 1st ed., pp. 137–177.

    Google Scholar 

  53. Zholob, S.A., Kovalchuk, V.I., Makievski, A.V., Kragel, J., Fainerman, V.B., and Miller, R., Determination of the dilational elasticity and viscosity from the surface tension response to harmonic area perturbations, Interfacial Rheology, 2009, vol. 1, pp. 38–76.

    Google Scholar 

  54. Linkevich, E.V., Yudina, N.V., and Savel’eva, A.V., Formation of humic colloids in aqueous solutions at different pH values, Russ. J. Phys. Chem., 2020, vol. 94, no. 4, pp. 742–747. https://doi.org/10.1134/S0036024420040093

    Article  CAS  Google Scholar 

  55. Tarasevich, Yu.I., Dolenko, S.A., Trifonova, M.Yu., and Alekseenko, E.Yu., Association and colloid chemical properties of humic acids in aqueous solution, Colloid J., 2013, vol. 75, no. 2, pp. 207–213. https://doi.org/10.1134/S1061933X1302016

    Article  CAS  Google Scholar 

  56. Prado, A.G.S., Pertusatti, J., and Nunes, A.R., Aspects of protonation and deprotonation of humic acid surface on molecular conformation, J. Braz. Chem. Soc., 2011, vol. 22, no. 8, pp. 1478–1483. https://doi.org/10.1590/S0103-50532011000800011

    Article  CAS  Google Scholar 

  57. Smejkalova, D. and Piccolo, A., Aggregation and disaggregation of humic supramolecular assemblies by NMR diffusion ordered spectroscopy (DOSY NMR), Environ. Sci. Technol., 2008, vol. 42, no. 3, pp. 699–706. https://doi.org/10.1021/es071828p

    Article  CAS  PubMed  Google Scholar 

  58. Yates, L.M. and Wandruszka, R., Effects of pH and metals on the surface tension of aqueous humic materials, Soil Sci. Soc. Am. J., 1999, vol. 63, no. 6, pp. 1645–1649. https://doi.org/10.2136/sssaj1999.6361645x

    Article  CAS  Google Scholar 

  59. Fainerman, V.B., Aksenenko, E.V., Makievski, A.V., Trukhin, D.V., Yeganehzad, S., Gochev, G., and Miller, R., Surface tension and dilational rheology of mixed β-casein–β-lactoglobulin aqueous solutions at the water/air interface, Food Hydrocolloids, 2020, vol. 106, pp. 105883–105891. https://doi.org/10.1016/j.foodhyd.2020.105883

    Article  CAS  Google Scholar 

  60. Program “ProteinG”. http://www.thomascat.info/Scientific/adso/adso.htm.

  61. Fainerman, V.B. and Miller, R., Equilibrium and dynamic characteristics of protein adsorption layers at gas-liquid interfaces: Theoretical and experimental data, Colloid J., 2005, vol. 67, no. 4, pp. 393–404. https://doi.org/10.1007/s10595-005-0110-8

    Article  CAS  Google Scholar 

  62. Fainerman, V.B., Kovalchuk, V.I., Aksenenko, E.V., Zinkovych, I.I., Makievski, A.V., Nikolenko, M.V., and Miller, R., Dilational viscoelasticity of proteins solutions in dynamic conditions, Langmuir, 2018, vol. 34, no. 23, pp. 6678–6686. https://doi.org/10.1021/acs.langmuir.8b00631

    Article  CAS  PubMed  Google Scholar 

  63. Lucassen-Reynders, E.H., Fainerman, V.B., and Miller, R., Surface dilational modulus or Gibbs’ elasticity of protein adsorption layers, J. Phys. Chem. B, 2004, vol. 108, no. 26, pp. 9173–9176. https://doi.org/10.1021/jp049682t

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, budget scope “Study of reactions of mechanochemical synthesis involving natural and synthetic polymers and organic compounds (FRES-2023-0002).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Khil’ko.

Ethics declarations

The authors of this work declare that they have no conflicts of interes-t.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khil’ko, S.L., Shelest, V.S., Rogatko, M.I. et al. Mechanochemical Synthesis of Ethoxyaminohumic Acids and Surface-Active Properties of Their Solutions at Solution–Air Interface. Colloid J 85, 1002–1013 (2023). https://doi.org/10.1134/S1061933X23600963

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600963

Keywords:

Navigation