Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipids as mediators of cancer progression and metastasis

Subjects

Abstract

Metastasis formation is a complex process, involving multiple crucial steps, which are controlled by different regulatory mechanisms. In this context, the contribution of cancer metabolism to the metastatic cascade is being increasingly recognized. This Review focuses on changes in lipid metabolism that contribute to metastasis formation in solid tumors. We discuss the molecular mechanisms by which lipids induce a pro-metastatic phenotype and explore the role of lipids in response to oxidative stress and as signaling molecules. Finally, we reflect on potential avenues to target lipid metabolism to improve the treatment of metastatic cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lipid biosynthesis.
Fig. 2: The role of lipid metabolism during metastasis.
Fig. 3: Selective dependencies of cancer cells on SCD or GPX4 depending on lipid composition.
Fig. 4: Targeting of lipid metabolism in metastasis.

Similar content being viewed by others

References

  1. Peck, B. & Schulze, A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer 5, 693–703 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Snaebjornsson, M. T., Janaki-Raman, S. & Schulze, A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 31, 62–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Fahy, E. et al. A comprehensive classification system for lipids. J. Lipid Res. 46, 839–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Liebisch, G. et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 61, 1539–1555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122, 4–22 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Broadfield, L. A., Pane, A. A., Talebi, A., Swinnen, J. V. & Fendt, S. M. Lipid metabolism in cancer: new perspectives and emerging mechanisms. Dev. Cell 56, 1363–1393 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Mollinedo, F. & Gajate, C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy: Thematic Review Series: Biology of Lipid Rafts. J. Lipid Res. 61, 611–635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Rysman, E. et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70, 8117–8126 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gouw, A. M. et al. The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth. Cell Metab. 30, 556–572 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Griffiths, B. et al. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab. 1, 3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Williams, K. J. et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. 73, 2550–2562 (2013).

    Article  Google Scholar 

  15. Bi, J. et al. Oncogene amplification in growth factor signaling pathways renders cancers dependent on membrane lipid remodeling. Cell Metab. 30, 525–538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Acharya, R., Shetty, S. S. & Kumari, N. S. Fatty acid transport proteins (FATPs) in cancer. Chem. Phys. Lipids 250, 105269 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Bensaad, K. et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 9, 349–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petan, T., Jarc, E. & Jusovic, M. Lipid droplets in cancer: guardians of fat in a stressful world. Molecules 23, 1941 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cruz, A. L. S., Barreto, E. A., Fazolini, N. P. B., Viola, J. P. B. & Bozza, P. T. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis. 11, 105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, J. et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene 35, 6378–6388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yue, S. et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19, 393–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geng, F. et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clin. Cancer Res. 22, 5337–5348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ogretmen, B. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer 18, 33–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Nagahashi, M. et al. Targeting the SphK1/S1P/S1PR1 axis that links obesity, chronic inflammation, and breast cancer metastasis. Cancer Res. 78, 1713–1725 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arseni, L. et al. Sphingosine-1-phosphate recruits macrophages and microglia and induces a pro-tumorigenic phenotype that favors glioma progression. Cancers 15, 479 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van der Weyden, L. et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541, 233–236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weigel, C. et al. Sphingosine kinase 2 in stromal fibroblasts creates a hospitable tumor microenvironment in breast cancer. Cancer Res. 83, 553–567 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Mullen, P. J., Yu, R., Longo, J., Archer, M. C. & Penn, L. Z. The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer 16, 718–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology — divergent pathophysiology. Nat. Rev. Endocrinol. 13, 710–730 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Simons, K. & Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688–699 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, M. & Casey, P. J. Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 17, 110–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaymak, I. et al. Mevalonate pathway provides ubiquinone to maintain pyrimidine synthesis and survival in p53-deficient cancer cells exposed to metabolic stress. Cancer Res. 80, 189–203 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. McGregor, G. H. et al. Targeting the metabolic response to statin-mediated oxidative stress produces a synergistic antitumor response. Cancer Res. 80, 175–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, K. L. et al. Organ-specific cholesterol metabolic aberration fuels liver metastasis of colorectal cancer. Theranostics 11, 6560–6572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suresh, S. et al. Identifying the transcriptional drivers of metastasis embedded within localized melanoma. Cancer Discov. 13, 194–215 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Dorsch, M. et al. Statins affect cancer cell plasticity with distinct consequences for tumor progression and metastasis. Cell Rep. 37, 110056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Longo, J., van Leeuwen, J. E., Elbaz, M., Branchard, E. & Penn, L. Z. Statins as anticancer agents in the era of precision medicine. Clin. Cancer Res. 26, 5791–5800 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Massague, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Obenauf, A. C. & Massague, J. Surviving at a distance: organ-specific metastasis. Trends Cancer 1, 76–91 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tasdogan, A., Ubellacker, J. M. & Morrison, S. J. Redox regulation in cancer cells during metastasis. Cancer Discov. 11, 2682–2692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klein, C. A. Cancer progression and the invisible phase of metastatic colonization. Nat. Rev. Cancer 20, 681–694 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Werner-Klein, M. et al. Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma. Nat. Commun. 9, 595 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Iacobuzio-Donahue, C. A., Litchfield, K. & Swanton, C. Intratumor heterogeneity reflects clinical disease course. Nat. Cancer 1, 3–6 (2020).

    Article  PubMed  Google Scholar 

  53. Welch, D. R. & Hurst, D. R. Defining the hallmarks of metastasis. Cancer Res. 79, 3011–3027 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Elia, I., Doglioni, G. & Fendt, S. M. Metabolic hallmarks of metastasis formation. Trends Cell Biol. 28, 673–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, eaaw5473 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pascual, G., Dominguez, D. & Benitah, S. A. The contributions of cancer cell metabolism to metastasis. Dis. Model. Mech. 11, dmm032920 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dirat, B. et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shen, D. et al. E2F1 promotes proliferation and metastasis of clear cell renal cell carcinoma via activation of SREBP1-dependent fatty acid biosynthesis. Cancer Lett. 514, 48–62 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Zaytseva, Y. Y. et al. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 72, 1504–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Du, Q. et al. FASN promotes lymph node metastasis in cervical cancer via cholesterol reprogramming and lymphangiogenesis. Cell Death Dis. 13, 488 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pascual, G. et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature 599, 485–490 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Li, Y. et al. Hepatic lipids promote liver metastasis. JCI Insight 5, e136215 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang, P. et al. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat. Commun. 13, 5782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vivas-Garcia, Y. et al. Lineage-restricted regulation of SCD and fatty acid saturation by MITF controls melanoma phenotypic plasticity. Mol. Cell 77, 120–137 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Tanaka, K. et al. ELOVL2 promotes cancer progression by inhibiting cell apoptosis in renal cell carcinoma. Oncol. Rep. 47, 23 (2022).

  71. Chen, G. et al. Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin. Cancer Res. 20, 5537–5546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kang, Y. P. et al. Spheroid-induced epithelial–mesenchymal transition provokes global alterations of breast cancer lipidome: a multi-layered omics analysis. Front. Oncol. 9, 145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Centenera, M. M. et al. ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer. Cancer Res. 81, 1704–1718 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Carracedo, A., Cantley, L. C. & Pandolfi, P. P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227–232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Davis, R. T. et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat. Cell Biol. 22, 310–320 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Quan, J. et al. Acyl-CoA synthetase long-chain 3-mediated fatty acid oxidation is required for TGFβ1-induced epithelial–mesenchymal transition and metastasis of colorectal carcinoma. Int. J. Biol. Sci. 18, 2484–2496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, C. K. et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science 363, 644–649 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Huang, Y. et al. Ct-OATP1B3 promotes high-grade serous ovarian cancer metastasis by regulation of fatty acid β-oxidation and oxidative phosphorylation. Cell Death Dis. 13, 556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van Weverwijk, A. et al. Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation. Nat. Commun. 10, 2698 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zaugg, K. et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 25, 1041–1051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nath, A. & Chan, C. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci. Rep. 6, 18669 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, Y. N. et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene 37, 6025–6040 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Schlaepfer, I. R. et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther. 13, 2361–2371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Loo, S. Y. et al. Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. Sci. Adv. 7, eabh2443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Altea-Manzano, P. et al. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. Nat. Cancer 4, 344–364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, D. et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 8, 1930–1942 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Parida, P. K. et al. Limiting mitochondrial plasticity by targeting DRP1 induces metabolic reprogramming and reduces breast cancer brain metastases. Nat. Cancer 4, 893–907 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Conrad, M. et al. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32, 602–619 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dixon, S. J. & Stockwell, B. R. The hallmarks of ferroptosis. Ann. Rev. Cancer Biol. 3, 35–54 (2019).

    Article  Google Scholar 

  92. Friedmann Angeli, J. P., Miyamoto, S. & Schulze, A. Ferroptosis: the greasy side of cell death. Chem. Res. Toxicol. 32, 362–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Magtanong, L., Ko, P. J. & Dixon, S. J. Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ. 23, 1099–1109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hassannia, B., Vandenabeele, P. & Vanden Berghe, T. Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Anasagasti, M. J. et al. Glutathione protects metastatic melanoma cells against oxidative stress in the murine hepatic microvasculature. Hepatology 27, 1249–1256 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Carretero, J. et al. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin. Exp. Metastasis 17, 567–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Huang, Z. Z. et al. Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J. 15, 19–21 (2001).

    Article  PubMed  Google Scholar 

  100. Sayin, V. I. et al. Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. eLife 6, e28083 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen, R. S. et al. Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/β-catenin pathway. Oncogene 28, 599–609 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Sato, M. et al. Loss of the cystine/glutamate antiporter in melanoma abrogates tumor metastasis and markedly increases survival rates of mice. Int. J. Cancer 147, 3224–3235 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, X. et al. Mitochondrial calcium uniporter drives metastasis and confers a targetable cystine dependency in pancreatic cancer. Cancer Res. 82, 2254–2268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cramer, S. L. et al. Systemic depletion of l-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Beatty, A. et al. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat. Commun. 12, 2244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xie, X. et al. BACH1-induced ferroptosis drives lymphatic metastasis by repressing the biosynthesis of monounsaturated fatty acids. Cell Death Dis. 14, 48 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. D’Herde, K. & Krysko, D. V. Ferroptosis: oxidized PEs trigger death. Nat. Chem. Biol. 13, 4–5 (2017).

    Article  PubMed  Google Scholar 

  109. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Li, H. et al. The landscape of cancer cell line metabolism. Nat. Med. 25, 850–860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Luis, G. et al. Tumor resistance to ferroptosis driven by stearoyl-CoA desaturase-1 (SCD1) in cancer cells and fatty acid biding protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol. 43, 102006 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tesfay, L. et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79, 5355–5366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liao, C. et al. Trichothecin inhibits invasion and metastasis of colon carcinoma associating with SCD-1-mediated metabolite alteration. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158540 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Friedmann Angeli, J. P. & Conrad, M. Selenium and GPX4, a vital symbiosis. Free Radic. Biol. Med. 127, 153–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Moosmann, B. & Behl, C. Selenoproteins, cholesterol-lowering drugs, and the consequences: revisiting of the mevalonate pathway. Trends Cardiovasc. Med. 14, 273–281 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, W. et al. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat. Commun. 12, 5103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Oweira, H. et al. Prognostic value of site-specific metastases in pancreatic adenocarcinoma: a surveillance epidemiology and end results database analysis. World J. Gastroenterol. 23, 1872–1880 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Flerin, N. C., Pinioti, S., Menga, A., Castegna, A. & Mazzone, M. Impact of immunometabolism on cancer metastasis: a focus on T cells and macrophages. Cold Spring Harb. Perspect. Med. 10, a037044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kayden, H. J., Karmen, A. & Dumont, A. Alterations in the fatty acid composition of human lymph and serum lipoproteins by single feedings. J. Clin. Invest. 42, 1373–1381 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gracia, G., Cao, E., Johnston, A. P. R., Porter, C. J. H. & Trevaskis, N. L. Organ-specific lymphatics play distinct roles in regulating HDL trafficking and composition. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G725–G735 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Nguyen, P. et al. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 92, 272–283 (2008).

    Article  CAS  Google Scholar 

  127. Montero-Calle, A. et al. Metabolic reprogramming helps to define different metastatic tropisms in colorectal cancer. Front. Oncol. 12, 903033 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Veldhuizen, R., Nag, K., Orgeig, S. & Possmayer, F. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta 1408, 90–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Rinaldi, G. et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition. Mol. Cell 81, 386–397 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Huang, Y. C. et al. Involvement of ACACA (acetyl-CoA carboxylase α) in the lung pre-metastatic niche formation in breast cancer by senescence phenotypic conversion in fibroblasts. Cell. Oncol. 46, 643–660 (2023).

  131. Cordero, A. et al. FABP7 is a key metabolic regulator in HER2+ breast cancer brain metastasis. Oncogene 38, 6445–6460 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zou, Y. et al. Polyunsaturated fatty acids from astrocytes activate PPARγ signaling in cancer cells to promote brain metastasis. Cancer Discov. 9, 1720–1735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tiwary, S. et al. Metastatic brain tumors disrupt the blood–brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter Mfsd2a. Sci. Rep. 8, 8267 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kim, J. & DeBerardinis, R. J. Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30, 434–446 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, D. & Dubois, R. N. Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schmitz, G. & Ecker, J. The opposing effects of n–3 and n–6 fatty acids. Prog. Lipid Res. 47, 147–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M. & Gutkind, J. S. Prostaglandin E2 promotes colon cancer cell growth through a Gs–axin–β-catenin signaling axis. Science 310, 1504–1510 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bell, C. R. et al. Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations. Nat. Commun. 13, 2063 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nikolos, F. et al. Cell death-induced immunogenicity enhances chemoimmunotherapeutic response by converting immune-excluded into T-cell inflamed bladder tumors. Nat. Commun. 13, 1487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yan, G. et al. A RIPK3–PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 78, 5586–5599 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Cen, B. et al. Prostaglandin E2 induces miR675-5p to promote colorectal tumor metastasis via modulation of p53 expression. Gastroenterology 158, 971–984 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Gong, Z. et al. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity 55, 1483–1500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang, Y. et al. Prostaglandin E2 receptor 4 mediates renal cell carcinoma intravasation and metastasis. Cancer Lett. 391, 50–58 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Elwakeel, E. et al. Disruption of prostaglandin E2 signaling in cancer-associated fibroblasts limits mammary carcinoma growth but promotes metastasis. Cancer Res. 82, 1380–1395 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Hamy, A. S. et al. Celecoxib with neoadjuvant chemotherapy for breast cancer might worsen outcomes differentially by COX-2 expression and ER status: exploratory analysis of the REMAGUS02 trial. J. Clin. Oncol. 37, 624–635 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lucotti, S. et al. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J. Clin. Invest. 129, 1845–1862 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kim, J. et al. Suppression of prostate tumor cell growth by stromal cell prostaglandin D synthase-derived products. Cancer Res. 65, 6189–6198 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Zhang, B. et al. PGD2/PTGDR2 signaling restricts the self-renewal and tumorigenesis of gastric cancer. Stem Cells 36, 990–1003 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Mattoscio, D. et al. Resolvin D1 reduces cancer growth stimulating a protective neutrophil-dependent recruitment of anti-tumor monocytes. J. Exp. Clin. Cancer Res. 40, 129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Penke, L. R. et al. FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis. J. Clin. Invest. 128, 2389–2405 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sun, L. et al. Resolvin D1 prevents epithelial–mesenchymal transition and reduces the stemness features of hepatocellular carcinoma by inhibiting paracrine of cancer-associated fibroblast-derived COMP. J. Exp. Clin. Cancer Res. 38, 170 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wu, F. et al. Prostaglandin E1 inhibits GLI2 amplification-associated activation of the Hedgehog pathway and drug refractory tumor growth. Cancer Res. 80, 2818–2832 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Gaude, E. & Frezza, C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat. Commun. 7, 13041 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gatto, F., Schulze, A. & Nielsen, J. Systematic analysis reveals that cancer mutations converge on deregulated metabolism of arachidonate and xenobiotics. Cell Rep. 16, 878–895 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Li, P. et al. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat. Immunol. 21, 1444–1455 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Tousignant, K. D. et al. Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol. Cancer Res. 17, 1166–1179 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Glatz, J. F. C., Wang, F., Nabben, M. & Luiken, J. CD36 as a target for metabolic modulation therapy in cardiac disease. Expert Opin. Ther. Targets 25, 393–400 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Aloia, A. et al. A fatty acid oxidation-dependent metabolic shift regulates the adaptation of BRAF-mutated melanoma to MAPK inhibitors. Clin. Cancer Res. 25, 6852–6867 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Holubarsch, C. J. et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin. Sci. 113, 205–212 (2007).

    Article  CAS  Google Scholar 

  164. Parik, S. et al. GBM tumors are heterogeneous in their fatty acid metabolism and modulating fatty acid metabolism sensitizes cancer cells derived from recurring GBM tumors to temozolomide. Front. Oncol. 12, 988872 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lien, E. C. et al. Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature 599, 302–307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rodriguez, R., Schreiber, S. L. & Conrad, M. Persister cancer cells: iron addiction and vulnerability to ferroptosis. Mol. Cell 82, 728–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33, 890–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Matin-Perez, M., Uxue, U. U., Bigas, C. & Benitah, S. A. Lipid metabolism in metastasis and therapy. Curr. Opin. Syst. Biol. 28, 100401 (2021).

  172. Lignitto, L. et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178, 316–329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Lien, E. C. & Vander Heiden, M. G. A framework for examining how diet impacts tumour metabolism. Nat. Rev. Cancer 19, 651–661 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Li, Z., Seehawer, M. & Polyak, K. Untangling the web of intratumour heterogeneity. Nat. Cell Biol. 24, 1192–1201 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Posor, Y., Jang, W. & Haucke, V. Phosphoinositides as membrane organizers. Nat. Rev. Mol. Cell Biol. 23, 797–816 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bailey, A. P. et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163, 340–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Qiu, Z. et al. GBA1-dependent membrane glucosylceramide reprogramming promotes liver cancer metastasis via activation of the Wnt/β-catenin signalling pathway. Cell Death Dis. 13, 508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Carter, B. Z. et al. An ARC-regulated IL1β/Cox-2/PGE2/β-catenin/ARC circuit controls leukemia–microenvironment interactions and confers drug resistance in AML. Cancer Res. 79, 1165–1177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Division of Metabolism and Microenvironment for helpful discussions. This work was supported by funding from the German Research Foundation (SCHU2670-2 and SPP2306). A.B.C.-F. is funded by a fellowship from the São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript and figures.

Corresponding author

Correspondence to Almut Schulze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Andrew Hoy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, F.C.E., Chaves-Filho, A.B. & Schulze, A. Lipids as mediators of cancer progression and metastasis. Nat Cancer 5, 16–29 (2024). https://doi.org/10.1038/s43018-023-00702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-023-00702-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer