Skip to main content
Log in

Legendrian Mean Curvature Flow in \(\eta \)-Einstein Sasakian Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Recently, there are a great deal of work done which connects the Legendrian isotopic problem with contact invariants. The isotopic problem of Legendre curve in a contact 3-manifold was studied via the Legendrian curve shortening flow which was introduced and studied by K. Smoczyk. On the other hand, in the SYZ Conjecture, one can model a special Lagrangian singularity locally as the special Lagrangian cones in \({\mathbb {C}}^{3}\). This can be characterized by its link which is a minimal Legendrian surface in the 5-sphere. Then in these points of view, we will focus on the existence of the long-time solution and asymptotic convergnce along the Legendrian mean curvature flow in the \((2n+1)\)-dimensional \(\eta \)-Einstein Sasakian manifolds under the suitable stability condition due to the Thomas-Yau conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets analysed during the current study are referenced in the text and publicly available.

References

  1. Blair, D. E.: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, vol. 203. Birkhäuser, Boston (2002)

  2. Boyer, C.P., Galicki, K.: Sasakian geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)

    Google Scholar 

  3. Cao, H.-D.: Deformation of Kähler metrics to K ähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Chen, J., He, W.Y.: A note on singular time of mean curvature flow. Math. Z. 266(4), 921C931 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chen, X.X., Li, H.: Stability of Kähler-Ricci flow. J. Geom. Anal. 20, 306–334 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chen, B.L., Yin, L.: Uniqueness and pseudolocality theorems of the mean curvature flow. Comm. Anal. Geom. 15(3), 435–490 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chen, X.X., Li, H., Wang, B.: On the Kä hler-Ricci flow with small initial energy. Geom. Func. Anal. 18–5, 1525–1563 (2008)

    Google Scholar 

  8. Colin, Vincent, Giroux, Emmanuel, Honda, Ko., The coarse classification of constant structures, in ‘Topology and geometry of manifolds’ (Athens, GA, 2001), 109–120, Proc. Sympos. Pure Math., 71, Amer. Math. Soc., Providence, RI 1052, 57036 (2003)

  9. Drugan, Gregory, He, Weiyong, Warren, Micah W.: Legendrian curve shortening flow in \({\mathbb{R} }^{\mathit{3}}\). Commun. Anal. Geom. 26(4), 759–785 (2018)

    Article  Google Scholar 

  10. Ekholm, Tobias: Etnyre, John, Sullivan, Michael: Non-isotopic Legendrian submanifolds in \({\mathbb{R} }^{2n+1}\). J. Differ. Geom. 71, 85–128 (2005)

    Google Scholar 

  11. Eliashberg, Y., Fraser, M.: Topologically trivial Legendrian knots. J. Symplectic Geom. 7(2), 77–127 (2009)

    Article  MathSciNet  Google Scholar 

  12. Evans, C. G.: Lagrangian mean curvature flow in the complex projective plane, arXiv:2202.06859

  13. Haskins, M.: Special Lagrangian cones. Am. J. Math. 126(4), 845–871 (2004)

    Article  MathSciNet  Google Scholar 

  14. Haskins, Mark: Kapouleas, Nikolaos: Special Lagrangian cones with higher genus links. Invent. math. 167, 223–294 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces, Calculus of variations and geometric evolution problems (Cetraro, 1996). In: Lecture Notes in Math., vol. 1713. Springer, Berlin, pp. 45–84 (1999)

  16. Huisken, G.: Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math 84, 463–480 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  17. Joyce, D.: Compact manifolds with special holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    Book  Google Scholar 

  18. Kajigaya, Toru: Second variational formula and the stability of Legendrian minimal submanifolds in Sasakian manifolds. Tohoku Math. J. 65, 523–543 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kajigaya, Toru: Kunikawa, Keita: Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow. J. Geomet. Phys. 128, 140–68 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, H.Z.: Convergence of Lagrangian mean curvature flow in Kähler-Einstein manifolds. Math. Z. 271(1–2), 313–342 (2012)

    Article  MathSciNet  Google Scholar 

  21. Neves, A.: Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent. Math. 168(3), 449–484 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Neves, A.: Singularities of Lagrangian mean curvature flow: monotone case. Math. Res. Lett. 17(1), 109–126 (2010)

    Article  MathSciNet  Google Scholar 

  23. Neves, A.: Finite time singularities for Lagrangian mean curvature flow. Ann. Math. (2) 177(3), 1029–1076 (2013)

    Article  MathSciNet  Google Scholar 

  24. Oh, Y.: Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds. Invent. Math. 101(2), 501–519 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  25. Oh, Y.: Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math. Z. 212, 175–192 (1993)

    Article  MathSciNet  Google Scholar 

  26. Ono, H.: Minimal Lagrangian submanifolds in adjoint orbits and upper bounds on the first eigenvalue of the Laplacian. J. Math. Soc. Japan. 55(1), 243–254 (2003)

    Article  MathSciNet  Google Scholar 

  27. Ono, H.: Second variation and Legendrian stabilities of minimal Legendrian submanifolds in Sasakian manifolds. Differ. Geomet. Appl. 22, 327–340 (2005)

    Article  MathSciNet  Google Scholar 

  28. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159

  29. Smoczky, K.: Harnack inequality for the Lagrangian mean curvature flow. Calc. Var. Partial Differ. Eq. 8(3), 247–258 (1999)

    Article  MathSciNet  Google Scholar 

  30. Smoczyk, K.: A canonical way to deform a Lagrangian submanifold, preprint, dg-ga/9605005

  31. Smoczyk, K.: Mean curvature flow in higher codimension—introduction and survey, Preprint (2010)

  32. Smoczyk, K.: Angle theorems for the Lagrangian mean curvature flow. Math. Z. 240(4), 849–883 (2002)

    Article  MathSciNet  Google Scholar 

  33. Smoczyk, K.: Closed Legendre geodesics in Sasaki manifolds. New York J. Math. 9, 23–47 (2003)

    MathSciNet  Google Scholar 

  34. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality, Nucl. Phys. B 479(1C2), 243C259 (1996)

  35. Thomas, R.P., Yau, S.-T.: Special Lagrangians, stable bundles and mean curvature flow. Comm. Anal. Geom. 10, 1075–1113 (2002)

    Article  MathSciNet  Google Scholar 

  36. Wang, M.-T.: Some recent developments in Lagrangian mean curvature flows, Surveys in differential geometry. Vol. XII. Geometric flows. In: Surv. Differ. Geom., vol. 12. International Press, Somerville, pp. 333–347 (2008)

Download references

Acknowledgements

The authors wish to thank the referees for helpful comments, suggestions and remarks which make the present form of the paper possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingbo Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shu-Cheng Chang, Chin-Tung Wu: Research supported in part by NSC.

Yingbo Han is partially supported by an NSFC 11971415 and Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SC., Han, Y. & Wu, CT. Legendrian Mean Curvature Flow in \(\eta \)-Einstein Sasakian Manifolds. J Geom Anal 34, 89 (2024). https://doi.org/10.1007/s12220-023-01537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01537-x

Keywords

Mathematics Subject Classification

Navigation