Skip to main content
Log in

Studies of Dynamics of Neutral Component of Current Sheet Plasma, Based on Spectral Broadening of Helium Line He I 5876 Å

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Spectroscopy methods were used for studying the dynamics of neutral plasma component in current sheets formed in two-dimensional (2D) and three-dimensional (3D) magnetic configurations during discharge in helium. It has been ascertained that when the current sheet is formed in the 2D magnetic field, flows of fast suprathermal helium atoms appear in it, which are directed along the current sheet width (the largest of the sheet transverse dimensions). It is shown that helium atoms can acquire the directed energy Wx due to the resonance charge exchange of accelerated ions in the current sheet plasma. The energy of directed motion of helium atoms can reach Wx ≈ (480 ± 120) eV, which is ~20 times higher than the temperature of helium atoms Ta ≈ (20 ± 2) eV at the same times. During the current sheet formation in the 3D magnetic configuration, fast helium atoms were not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. S. I. Syrovatskii, Annu. Rev. Astron. Astrophys. 19, 163 (1981).

    Article  ADS  Google Scholar 

  2. B. B. Kadomtsev, Rep. Prog. Phys. 50, 115 (1987).

    Article  ADS  Google Scholar 

  3. E. R. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge Univ. Press, New York, 2000).

    Book  Google Scholar 

  4. A. G. Frank, Phys.—Usp. 53, 941 (2010).

    Article  Google Scholar 

  5. M. Yamada and R. Kulsrud, Rev. Mod. Phys. 82, 603 (2010).

    Article  ADS  Google Scholar 

  6. M. Yamada, J. Yoo, and C. E. Myers, Phys. Plasmas 23, 055402 (2016).

  7. M. Yamada, Magnetic Reconnection: A Modern Synthesis of Theory, Experiment, and Observations, Princeton Series in Astrophysics, Vol. 47 (Princeton Univ. Press. Princeton, NJ, 2022).

  8. W. Gekelman, T. De Haas, W. Daughton, B. Van Compernolle, T. Intrator, and S. Vincena, Phys. Rev. Lett. 116, 235101 (2016).

  9. A. G. Frank, N. P. Kyrie and S. N. Satunin, Phys. Plasmas 18, 111209 (2011).

  10. A. V. Artemyev, A. A. Petrukovich, A. G. Frank, I. Y. Vasko, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res.: Space Phys. 118, 2789 (2013).

    Article  ADS  Google Scholar 

  11. L. M. Zelenyi, A. G. Frank, A. V. Artemyev, A. A. Petrukovich, and R. Nakamura, Plasma Phys. Controlled Fusion 58, 054002 (2016).

  12. A. G. Frank, A. V. Artemyev, and L. M. Zelenyi, J. Exp. Theor. Phys. 123, 699 (2016).

    Article  ADS  Google Scholar 

  13. A. G. Frank, N. P. Kyrie, S. N. Satunin, and S. A. Savinov, Universe 7, 400 (2021).

    Article  ADS  Google Scholar 

  14. R. Nakamura, W. Baumjohann, C. Mouikis, L. M. Kistler, A. Runov, M. Volwerk, Y. Asano, Z. Vörös, T. L. Zhang, B. Klecker, H. Rème, and A. Balogh, Geophys. Res. Lett. 31, L09804 (2004).

  15. L. Juusola, S. Hoilijoki, Y. Pfau-Kempf, U. Ganse, R. Jarvinen, M. Battarbee, E. Kilpua, L. Turc, and M. Palmroth, Ann. Geophys. 36, 1183 (2018).

    Article  ADS  Google Scholar 

  16. M. Hoshino, T. Mukai, I. Shinohara, Y. Saito, and S. Kokubun, J. Geophys. Res.: Space Phys. 105, 337 (2000).

    Article  ADS  Google Scholar 

  17. N. K. Walia, K. Seki, and T. Amano, J. Geophys. Res.: Space Phys. 127, e2021JA030066 (2022).

  18. A. G. Frank, A. V. Artemyev, S. Lu, X.-J. Zhang, and N. P. Kyrie, Plasma Phys. Controlled Fusion 65, 095006 (2023).

  19. A. G. Frank, V. P. Gavrilenko, N. P. Kyrie, and G. V. Ostrovskaya, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. III-2 (Yanus-K, Moscow, 2008), p. 335 [in Russian].

  20. N. P. Kyrie, V. S. Markov, and A. G. Frank, Plasma Phys. Rep. 36, 357 (2010).

    Article  ADS  Google Scholar 

  21. N. P. Kyrie and A. G. Frank, Plasma Phys. Rep. 38, 960 (2012).

    Article  ADS  Google Scholar 

  22. N. P. Kyrie, V. S. Markov, and A. G. Frank, JETP Lett. 95, 14 (2012).

    Article  ADS  Google Scholar 

  23. A. G. Frank and N. P. Kyrie, Plasma Phys. Rep. 43, 696 (2017).

    Article  ADS  Google Scholar 

  24. N. P. Kyrie, A. G. Frank, and D. G. Vasilkov, Plasma Phys. Rep. 45, 325 (2019).

    Article  ADS  Google Scholar 

  25. N. P. Kyrie and S. A. Savinov, Plasma Phys. Rep. 47, 611 (2021).

    Article  ADS  Google Scholar 

  26. D. E. Kharlachev and N. P. Kyrie, in VI International Scientific and Practical Conference “Current Problems and Prospects for the Development of Radio Engineering and Infocommunication Systems” (Radioinfocom-2022), Moscow, 2022, Book of Scientific Papers, p. 266.

  27. N. P. Kyrie, A. G. Frank, A. R. Mingaleev, T. B. Mav-lyudov, K. V. Shpakov, and I. S. Baidin, Plasma Phys. Rep. 48, 1165 (2022). https://doi.org/10.1134/S1063780X22600724

    Article  ADS  Google Scholar 

  28. NanoScan Instruments. http://www.nanoscan.su. Cited August 25, 2023.

  29. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

    Google Scholar 

  30. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).

    Google Scholar 

  31. S. A. Maiorov, Bull. Lebedev Phys. Inst. 34, 214 (2007).

    Article  ADS  Google Scholar 

  32. S. A. Maiorov, Bull. Lebedev Phys. Inst. 39, 51 (2012).

    Article  ADS  Google Scholar 

  33. R. I. Golyatina and S. A. Maiorov, Prikl. Fiz., No. 5, 22 (2011).

  34. Yu. D. Korolev, Elementary and Kinetic Processes in Gas-Discharge Plasma (Tomsk. Politekh., Tomsk, 2008) [in Russian].

  35. B. M. Smirnov, Introduction to Physics of Atomic Collisions (Atomizdat, Moscow, 1973) [in Russian].

    Google Scholar 

  36. B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  37. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.A. Ivanov for helpful discussions and S.N. Satunin for assistance in data processing.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Kyrie, D. E. Kharlachev or K. V. Shpakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyrie, N.P., Kharlachev, D.E. & Shpakov, K.V. Studies of Dynamics of Neutral Component of Current Sheet Plasma, Based on Spectral Broadening of Helium Line He I 5876 Å. Plasma Phys. Rep. 49, 1275–1283 (2023). https://doi.org/10.1134/S1063780X23601475

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601475

Keywords:

Navigation