skip to main content
research-article

Hermitian Dynamic Mode Decomposition - Numerical Analysis and Software Solution

Published:16 March 2024Publication History
Skip Abstract Section

Abstract

The Dynamic Mode Decomposition (DMD) is a versatile and increasingly popular method for data driven analysis of dynamical systems that arise in a variety of applications in, e.g., computational fluid dynamics, robotics or machine learning. In the framework of numerical linear algebra, it is a data driven Rayleigh-Ritz procedure applied to a DMD matrix that is derived from the supplied data. In some applications, the physics of the underlying problem implies hermiticity of the DMD matrix, so the general DMD procedure is not computationally optimal. Furthermore, it does not guarantee important structural properties of the Hermitian eigenvalue problem and may return non-physical solutions. This paper proposes a software solution to the Hermitian (including the real symmetric) DMD matrices, accompanied with a numerical analysis that contains several fine and instructive numerical details. The eigenpairs are computed together with their residuals, and perturbation theory provides error bounds for the eigenvalues and eigenvectors. The software is developed and tested using the LAPACK package.

REFERENCES

  1. [1] Abdelfattah A., Anzt H., Bouteiller A., Danalis A., Dongarra J., Gates M., Haidar A., Kurzak J., Luszczek P., Tomov S., Wood S., Wu P., Yamazaki I., and Yarkhan A.. 2017. Roadmap for the Development of a Linear Algebra Library for Exascale Computing: SLATE: Software for Linear Algebra Targeting Exascale. SLATE Working Notes 01, ICL-UT-17-02.Google ScholarGoogle Scholar
  2. [2] Akshay S., Soman K. P., Mohan Neethu, and Kumar S. Sachin. 2021. Dynamic Mode Decomposition and Its Application in Various Domains: An Overview. Springer International Publishing, Cham, 121132. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Anderson E., Bai Z., Bischof C., Blackford L. S., Demmel J., Dongarra J. J., Croz J. Du, Hammarling S., Greenbaum A., McKenney A., and Sorensen D.. 1999. LAPACK Users’ Guide (Third Ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. [4] Baddoo P. J., Herrmann B., McKeon B. J., Kutz J. N., and Brunton S. L.. 2021. Physics-informed dynamic mode decomposition (piDMD). arXiv e-prints, Article arXiv:2112.04307 (Dec. 2021), arXiv:2112.04307 pages. arxiv:2112.04307 [math.DS]Google ScholarGoogle Scholar
  5. [5] Brunton S. L., Budišić M., Kaiser E., and Kutz J. N.. 2022. Modern Koopman theory for dynamical systems. SIAM Rev. 64, 2 (2022), 229340. DOI:arXiv:https://doi.org/10.1137/21M1401243Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. [6] Budišić M., Mohr R., and Mezić I.. 2012. Applied Koopmanism. Chaos: An Interdisciplinary Journal of Nonlinear Science 22, 4 (2012), 047510. DOI:arXiv:https://doi.org/10.1063/1.4772195Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Azencot I. Cohen, O., Lifshitz P., and Gilboa G.. 2020. Modes of homogeneous gradient flows. arXiv e-prints, Article arXiv:2007.01534 (July 2020), arXiv:2007.01534 pages. DOI:arxiv:2007.01534 [math.DS]Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Colbrook M. J.. 2022. The mpEDMD algorithm for data-driven computations of measure-preserving dynamical systems. arXiv e-prints, Article arXiv:2209.02244 (Sept. 2022), arXiv:2209.02244 pages. DOI:arxiv:2209.02244 [math.NA]Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Colbrook Matthew J., Ayton Lorna J., and Szőke Máté. 2023. Residual dynamic mode decomposition: Robust and verified Koopmanism. Journal of Fluid Mechanics 955 (2023), A21. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Colbrook Matthew J. and Townsend Alex. 2024. Rigorous data–driven computation of spectral properties of Koopman operators for dynamical systems. Communications on Pure and Applied Mathematics 77, 1 (2024), 221283. DOI:arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.22125Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Demmel J., Grigori L., Hoemmen M., and Langou J.. 2012. Communication-optimal parallel and sequential QR and LU factorizations. SIAM Journal on Scientific Computing 34, 1 (2012), A206–A239. DOI:arXiv:http://dx.doi.org/10.1137/080731992Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] Demmel L. W.. 1997. Applied Numerical Linear Algebra. SIAM. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Dongarra J., Gates M., Haidar A., Kurzak J., Luszczek P., Tomov S., and Yamazaki I.. 2014. Accelerating Numerical Dense Linear Algebra Calculations with GPUs. Springer International Publishing, Cham, 328. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Drmač Z.. 2020. Dynamic Mode Decomposition-A Numerical Linear Algebra Perspective. Springer International Publishing, Cham, 161194. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  15. Drmač Z.. [n. d.]. A LAPACK implementation of the dynamic mode decomposition. ACM Trans. Math. Softw. (to appear) ([n. d.]).Google ScholarGoogle Scholar
  16. [16] Drmač Z.. 2022. A LAPACK Implementation of the Dynamic Mode Decomposition I.Technical Report. Department of Mathematics, University of Zagreb, Croatia, and AIMdyn Inc. Santa Barbara, CA. LAPACK Working Note 298.Google ScholarGoogle Scholar
  17. [17] Drmač Z.. 2022. A LAPACK Implementation of the Dynamic Mode Decomposition II.Technical Report. Department of Mathematics, University of Zagreb, Croatia, and AIMdyn Inc. Santa Barbara, CA. LAPACK Working Note 300.Google ScholarGoogle Scholar
  18. [18] Drmač Zlatko and Mezić Igor. 2023. A data driven Koopman-Schur decomposition for computational analysis of nonlinear dynamics. arXiv e-prints, Article arXiv:2312.15837 (Dec. 2023), arXiv:2312.15837 pages. DOI:arxiv:2312.15837 [math.NA]Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Drmač Z., Mezić I., and Mohr R.. 2018. Data driven modal decompositions: Analysis and enhancements. SIAM Journal on Scientific Computing 40, 4 (2018), A2253–A2285. DOI:arXiv:https://doi.org/10.1137/17M1144155Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Drmač Z., Mezić I., and Mohr R.. 2021. Identification of nonlinear systems using the infinitesimal generator of the Koopman semigroup - A numerical implementation of the Mauroy-Goncalves method. Mathematics 9, 17 (2021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Fan Ky and Hoffman A. J.. 1955. Some metric inequalities in the space of matrices. Proc. Amer. Math. Soc. 6, 1 (1955), 111116. http://www.jstor.org/stable/2032662Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Giannakis D. and Das S.. 2020. Extraction and prediction of coherent patterns in incompressible flows through space-time Koopman analysis. Physica D: Nonlinear Phenomena 402 (2020), 132211. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Higham Nicholas J.. 1988. The symmetric procrustes problem. BIT 28 (1988), 133143. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Jovanović M. R., Schmid P. J., and Nichols J. W.. 2012. Low-rank and sparse dynamic mode decomposition. Center for Turbulence Research, Annual Research Briefs (2012), 139152.Google ScholarGoogle Scholar
  25. [25] Jovanović M. R., Schmid P. J., and Nichols J. W.. 2014. Sparsity-promoting dynamic mode decomposition. Physics of Fluids 26, 2 (Feb. 2014), 024103.Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Kahan W.. 2011. The Nearest Orthogonal or Unitary Matrix. Lecture Notes. University of California, Berkeley.Google ScholarGoogle Scholar
  27. [27] Mezić I.. 2013. Analysis of fluid flows via spectral properties of the Koopman operator. Annual Reviews of Fluid Mechanics 45 (2013), 357378.Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Murray R., Demmel J., Mahoney M. W., Erichson N. B., Melnichenko M., Malik O. A., Grigori L., Luszczek P., Dereziński M., Lopes M. E., Liang T., Luo H., and Dongarra J.. 2022. Randomized Numerical Linear Algebra - A Perspective on the Field with an Eye to Software. Technical Report 299. LAPACK Working Note. http://www.netlib.org/lapack/lawnspdf/lawn299.pdfGoogle ScholarGoogle Scholar
  29. [29] Nguyen H. D. and Demmel J.. 2015. Reproducible tall-skinny QR. In 2015 IEEE 22nd Symposium on Computer Arithmetic. 152159. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Parlett B. N.. 1998. The Symmetric Eigenvalue Problem, Classics in Applied Mathematics 20. SIAM, Philadelphia, PA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. [31] Rowley C. W., Mezić I., Bagheri S., Schlatter P., and Henningson D. S.. 2009. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics 641 (2009), 115127.Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Schmid P. J.. 2010. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics 656 (10 August 2010), 528. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Schmid P. J.. 2011. Application of the dynamic mode decomposition to experimental data. Experiments in Fluids 50, 4 (2011), 11231130. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Schmid P. J.. 2021. Data-driven and operator-based tools for the analysis of turbulent flows. In Advanced Approaches in Turbulence, Durbin Paul (Ed.). Elsevier, 243305. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Schmid P. J.. 2022. Dynamic mode decomposition and its variants. Annual Review of Fluid Mechanics 54, 1 (2022), 225254. DOI:arXiv:https://doi.org/10.1146/annurev-fluid-030121-015835Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Schmid P. J., Li L., Juniper M. P., and Pust O.. 2011. Applications of the dynamic mode decomposition. Theoretical and Computational Fluid Dynamics 25, 1 (2011), 249259. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Stewart G. W. and Sun Ji-G.. 1990. Matrix Perturbation Theory. Academic Press.Google ScholarGoogle Scholar
  38. [38] Tomov S., Dongarra J., and Baboulin M.. 2010. Towards dense linear algebra for hybrid GPU accelerated manycore systems. Parallel Comput. 36, 5-6 (June 2010), 232240. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Tomov S., Nath R., Ltaief H., and Dongarra J.. 2010. Dense linear algebra solvers for multicore with GPU accelerators. In Proc. of the IEEE IPDPS’10. IEEE Computer Society, Atlanta, GA, 18. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Tu J. H., Rowley C. W., Luchtenburg D. M., Brunton S. L., and Kutz J. N.. 2014. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics 1, 2 (2014), 391421.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Sluis A. van der. 1969. Condition numbers and equilibration of matrices. Numer. Math. 14 (1969), 1423.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. [42] Williams M. O., Kevrekidis I. G., and Rowley C. W.. 2015. A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science 25, 6 (June 2015), 13071346.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Hermitian Dynamic Mode Decomposition - Numerical Analysis and Software Solution

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Mathematical Software
      ACM Transactions on Mathematical Software  Volume 50, Issue 1
      March 2024
      228 pages
      ISSN:0098-3500
      EISSN:1557-7295
      DOI:10.1145/3613539
      • Editors:
      • Zhaojun Bai,
      • Wolfgang Bangerth
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 March 2024
      • Online AM: 26 January 2024
      • Accepted: 28 December 2023
      • Revised: 16 November 2023
      • Received: 29 March 2023
      Published in toms Volume 50, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)128
      • Downloads (Last 6 weeks)51

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text