Skip to main content
Log in

Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Bifidobacteria are the most prevalent members of the intestinal microbiota in mammals and other animals, and they play a significant role in promoting gut health through their probiotic effects. Recently, the potential applications of Bifidobacteria have been extended to skin health. However, the beneficial mechanism of Bifidobacteria on the skin barrier remains unclear. In this study, keratinocyte HaCaT cells were used as models to evaluate the protective effects of the cell-free supernatant (CFS), heat-inactivated bacteria, and bacterial lysate of Bifidobacterium animalis CGMCC25262 on the skin barrier and inflammatory cytokines. The results showed that all the tested samples were able to upregulate the transcription levels of biomarker genes associated with the skin barrier, such as hyaluronic acid synthetase (HAS) and aquaporins (AQPs). Notably, the transcription of the hyaluronic acid synthetase gene-2 (HAS-2) is upregulated by 3~4 times, and AQP3 increased by 2.5 times when the keratinocyte HaCaT cells were co-incubated with 0.8 to 1% CFS. In particular, the expression level of Filaggrin (FLG) in HaCaT cells increased by 1.7 to 2.7 times when incubated with Bifidobacterial samples, reaching its peak at a concentration of 0.8% CFS. Moreover, B. animalis CGMCC25262 also decreased the expression of the proinflammatory cytokine RANTES to one-tenth compared to the levels observed in HaCaT cells induced with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). These results demonstrate the potential of B. animalis CGMCC25262 in protecting the skin barrier and reducing inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

We warmly thank Dr. Wentao Kong for critical reading of the manuscript.

Funding

This research was funded by the project of “probiotics synergetic innovation project” between Shandong University and Shandong Freda Biotech Co., Ltd (QD 2450021038).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoce Xu wrote original draft preparation; xingfang Tian and Meng Wang cultured and detected the HaCaT cell survivability; Yan Li investigated expression of Filag protein and HasA protein; Suzhen Yang and Jian Kong reviewing and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jian Kong.

Ethics declarations

Ethic statements

The authors declare this research did not include any human subjects and animal experiments.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Tian, X., Wang, M. et al. Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes. Int Microbiol (2024). https://doi.org/10.1007/s10123-024-00485-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-024-00485-y

Keywords

Navigation