Skip to main content
Log in

Long-Lasting Filtration of Oily Water by Anti-Fouling Underwater Oleophobic Sand Particles

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The produced water from the oilfield was purified with filter material and then injected back into the ground. The serpentine filter material was easy to harden with the increase in filtration amount, which affected the water quality. A superhydrophilic/underwater oleophobic serpentine filter material was successfully prepared by a simple method of coating modification, which exhibited long-lasting filtration of oily water, good filtration and anti-fouling properties, and resistance to harden. The film-forming material of the superhydrophilic/underwater oleophobic coating was composed of SiO2 particles with small size, which could completely and evenly cover the filter particle. The weight loss was only 7.6% after mechanical stirring for 90 min. Compared with the original filter material, the superhydrophilic/underwater oleophobic serpentine filter material showed a better anti-fouling ability and resistance to harden. The filtration of crude oil emulsion and oil slick sewage showed a better backwashing performance. After 35 cycles of continuous filtration of suspended solids in wastewater, the backwashing rate reached 78.4%. The results provided an effective method for the filtration of oily wastewater in the oilfield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Yang, S. D., Chen, L., Wang, S. S., Liu, S., Xu, Q., Zhu, J., Zhang, Q., & Zhao, P. (2022). Honeycomb-like cobalt hydroxide nanosheets induced basalt fiber fabrics with robust and durable superhydrophobicity for anti-icing and oil-water separation. Journal of Hazardous Materials, 429, 128284. https://doi.org/10.1016/j.jhazmat.2022.128284

    Article  Google Scholar 

  2. Kukkar, D., Rani, A., Kumar, V., Younis, S. A., Zhang, M., Lee, S. S., Tsang, D. C. W., & Kim, K. H. (2020). Recent advances in carbon nanotube sponge-based sorption technologies for mitigation of marine oil spills. Journal of Colloid and Interface Science, 570, 411–422. https://doi.org/10.1016/j.jcis.2020.03.006

    Article  Google Scholar 

  3. Ismail, N. H., Salleh, W. N. W., Ismail, A. F., Hasbullah, H., Yusof, N., Aziz, F., & Jaafar, J. (2020). Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Separation and Purification Technology, 233, 116007. https://doi.org/10.1016/j.seppur.2019.116007

    Article  Google Scholar 

  4. Fu, C., Gu, L., Zeng, Z. X., & Xue, Q. J. (2020). Simply adjusting the unidirectional liquid transport of scalable Janus membranes toward moisture-wicking fabric, rapid demulsification, and fast oil/water separation. ACS Applied Materials & Interfaces, 12, 51102–51113. https://doi.org/10.1021/acsami.0c15158

    Article  Google Scholar 

  5. Gao, S. J., Chen, J. H., Zheng, Y. R., Wang, A., Dong, D. Y., Zhu, Y. Z., Zhang, Y. T., Fang, W. X., & Jin, J. (2022). Gradient adhesive hydrogel decorated superhydrophilic membranes for ultra-stable oil/water separation. Advanced Functional Materials, 32, 2205990. https://doi.org/10.1002/adfm.202205990

    Article  Google Scholar 

  6. Bai, Z. X., Jia, K., Liu, C. C., Wang, L. L., Lin, G., Huang, Y. M., Liu, S. N., & Liu, X. B. (2021). A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation. Advanced Functional Materials, 31, 2104701. https://doi.org/10.1002/adfm.202104701

    Article  Google Scholar 

  7. Yan, Y. F., Zhang, Q. Y., Li, Y., Guo, Z. Y., Tian, D. L., Zhang, X. F., & Jiang, L. (2020). The highly efficient collection of underwater oil droplets on an anisotropic porous cone surface via an electric field. Journal of Materials Chemistry A, 8, 8605–8611. https://doi.org/10.1039/D0TA02055A

    Article  Google Scholar 

  8. Xie, A., Wu, Y. T., Liu, Y., Xue, C. G., Ding, G. X., Cheng, G. J., Cui, J. Y., & Pan, J. M. (2022). Robust antifouling NH2-MIL-88B coated quartz fibrous membrane for efficient gravity-driven oil-water emulsion separation. Journal of Membrane Science, 644, 120093. https://doi.org/10.1016/j.memsci.2021.120093

    Article  Google Scholar 

  9. Yin, K., Chu, D. K., Dong, X. R., Wang, C., Duan, J. A., & He, J. (2017). Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation. Nanoscale, 9, 14229–14235. https://doi.org/10.1039/C7NR04582D

    Article  Google Scholar 

  10. Wang, F. P., Zhao, X. J., Wahid, F., Zhao, X. Q., Qin, X. T., Bai, H., Xie, Y. Y., Zhong, C., & Jia, S. R. (2021). Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation. Carbohydrate Polymers, 253, 117220. https://doi.org/10.1016/j.carbpol.2020.117220

    Article  Google Scholar 

  11. Shah, A. A., Yoo, Y. M., Park, A., Cho, Y. H., Park, Y. I., & Park, H. (2022). Poly(ethylene-co-vinyl alcohol) electrospun nanofiber membranes for gravity-driven oil/water separation. Membranes, 12, 382. https://doi.org/10.3390/membranes12040382

    Article  Google Scholar 

  12. Gong, H. F., Li, W. L., Zhang, X. M., Peng, Y., Yu, B., & Mou, Y. (2021). Effects of droplet dynamic characteristics on the separation performance of a demulsification and dewatering device coupling electric and centrifugal fields. Separation and Purification Technology, 257, 117905. https://doi.org/10.1016/j.seppur.2020.117905

    Article  Google Scholar 

  13. Bulgarelli, N. A. V., Biazussi, J. L., Verde, W. M., Perles, C. E., Castro, M. S. D., & Bannwart, A. C. (2022). A novel criterion based on slip ratio to assess the flow behavior of W/O emulsions within centrifugal pumps. Chemical Engineering Science, 247, 117050. https://doi.org/10.1016/j.ces.2021.117050

    Article  Google Scholar 

  14. Song, Y. Y., Zhang, X., Yang, J. L., Zhang, Z. Q., Cheng, G. G., Liu, Y., Lv, G. J., & Yu, Z. P. (2023). Ultrafast sorption of micro-oil droplets within water by superhydrophobic-superoleophilic conical micro-arrays. Separation and Purification Technology, 315, 123651. https://doi.org/10.1016/j.seppur.2023.123651

    Article  Google Scholar 

  15. Xu, J. K., Cai, Q. Q., Lian, Z. X., Yu, Z. J., Ren, W. F., & Yu, H. D. (2021). Research progress on corrosion resistance of magnesium alloys with bio-inspired water-repellent properties: A review. Journal of Bionic Engineering, 18, 735–763. https://doi.org/10.1007/s42235-021-0064-5

    Article  Google Scholar 

  16. Huang, J. F., Kang, J. J., Zhang, J. X., Huang, J. X., & Guo, Z. G. (2022). Slippery surface with petal-like structure for protecting Al alloy: Anti-corrosion, anti-fouling and anti-icing. Journal of Bionic Engineering, 19, 83–91. https://doi.org/10.1007/s42235-021-00124-6

    Article  Google Scholar 

  17. Li, H., Peng, Y. J., Zhang, K., Li, P. C., Xin, L., Yin, X. L., & Yu, S. R. (2022). Spontaneous self-healing bio-inspired lubricant-infused coating on pipeline steel substrate with reinforcing anti-corrosion, anti-fouling, and anti-scaling properties. Journal of Bionic Engineering, 19, 1601–1614. https://doi.org/10.1007/s42235-022-00220-1

    Article  Google Scholar 

  18. Zhuo, Y. Z., Chen, J. H., Xiao, S. B., Li, T., Wang, F., He, J. Y., & Zhang, Z. L. (2021). Gels as emerging anti-icing materials: A mini review. Materials Horizons, 8, 3266–3280. https://doi.org/10.1039/D1MH00910A

    Article  Google Scholar 

  19. Liu, P. S., Niu, L. Y., Tao, X. H., Li, X. H., & Zhang, Z. J. (2019). Facile preparation of superhydrophobic quartz sands with micro-nano-molecule hierarchical structure for controlling the permeability of oil and water phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 569, 1–9. https://doi.org/10.1016/j.colsurfa.2019.02.035

    Article  Google Scholar 

  20. Barker, J. A., & Henderson, D. (1972). Theories of liquids. Annual Review of Physical Chemistry, 23, 439–484. https://doi.org/10.1146/annurev.pc.23.100172.002255

    Article  Google Scholar 

  21. Wei, B. G., Yue, C., Liu, J. L., Wang, G., Dai, L., Song, X. S., Wu, F. P., Li, H., & Chang, Q. (2019). Fabrication of superhydrophilic and underwater superoleophobic quartz sand filter for oil/water separation. Separation and Purification Technology, 229, 115808. https://doi.org/10.1016/j.seppur.2019.115808

    Article  Google Scholar 

  22. Tian, D. L., Zhang, X. F., Tian, Y., Wu, Y., Wang, X., Zhai, J., & Jiang, L. (2012). Photo-induced water-oil separation based on switchable superhydrophobicity-superhydrophilicity and underwater super-oleophobicity of the aligned ZnO nanorod array-coated mesh films. Journal of Materials Chemistry, 22, 19652–19657. https://doi.org/10.1039/C2JM34056A

    Article  Google Scholar 

  23. Peng, J. W., Geng, H. L., Xu, F., Zhang, M., Ye, P., Jiang, Y. X., & Wang, H. Y. (2023). Endowing versatility and superamphiphobicity to composite coating via a bioinspired strategy. Chemical Engineering Journal, 455, 140772. https://doi.org/10.1016/j.cej.2022.140772

    Article  Google Scholar 

  24. Wang, X. B., Wang, J. L., Liao, J., Wang, L., Li, M., Xu, R. D., & Yang, L. J. (2022). Surface engineering of superhydrophilic Ni2P@NiFe LDH heterostructure toward efficient water splitting electrocatalysis. Applied Surface Science, 602, 154287. https://doi.org/10.1016/j.apsusc.2022.154287

    Article  Google Scholar 

  25. Wu, T. N., Yin, K., Zhang, H., Wang, L. X., He, Y. C., He, J., Duan, J. A., & Arnusch, C. J. (2023). Water-triggered visible and infrared light reversible switch using nanowires-covered micropores superhydrophilic surfaces. Chemical Engineering Journal, 461, 141894. https://doi.org/10.1016/j.cej.2023.141894

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (No. 52071076) and Opening Project of State Key Laboratory of Advanced Technology for Float Glass (Grant 2022KF03) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaopeng Yu or Youfa Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 88 KB)

Supplementary file2 (MP4 4829 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, J., Wang, R. et al. Long-Lasting Filtration of Oily Water by Anti-Fouling Underwater Oleophobic Sand Particles. J Bionic Eng 21, 913–923 (2024). https://doi.org/10.1007/s42235-023-00461-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00461-8

Keywords

Navigation