Skip to main content
Log in

Determination of the Strain Tensor and the Elastic Stress Fields in a Diamond Plate with a High Bending Curvature Using Local Laue Diffraction Data

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Cylindrically bent diamond single-crystal plates have a great potential for creating energy dispersive spectrometers and focusing crystal monochromators. When they are designed, it is necessary to take into account the significant stresses that appear on bending the plates. The strain tensor and the elastic stress fields in a cylindrically bent single-crystal (110) diamond plate are calculated. The calculations are based on experimental data obtained by local Laue diffraction. The calculation results can be used to design new X-ray optical devices with the ability to control their parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Y. Shvyd’ko, S. Terentyev, V. Blank, et al., J. Synchrotr. Rad. 28, 1720 (2021).

    Article  Google Scholar 

  2. I. Nam, C.-K. Min, B. Oh, et al., Nat. Photon. 15, 435 (2021).

    Article  ADS  Google Scholar 

  3. J. Amann, W. Berg, V. Blank, et al., Nat. Photon. 6, 693 (2012).

    Article  ADS  Google Scholar 

  4. B. Larson, W. Yang, G. E. Ice, et al., Nature (London, U.K.) 415, 887 (2002).

    Article  ADS  Google Scholar 

  5. D. M. Kheiker, V. A. Shishkov, Yu. N. Shilin, A. A. Rusakov, P. V. Dorovatovski, and N. V. Zhavoronkov, Crystallogr. Rep. 52, 740 (2007).

    Article  ADS  Google Scholar 

  6. U. Boesenberg, L. Samoylova, T. Roth, et al., Opt. Express 25, 2852 (2017).

    Article  ADS  Google Scholar 

  7. S. Terentyev, V. Blank, T. Kolodziej, et al., Rev. Sci. Instrum. 87, 125117 (2016).

  8. L. Samoylova, U. Boesenberg, A. Chumakov, et al., J. Synchrotr. Rad. 26, 1069 (2019).

    Article  Google Scholar 

  9. P. Qi, N. Samadi, M. Martinson, O. Ponomarenko, et al., Sci. Rep. 9, 17734 (2019).

    Article  ADS  Google Scholar 

  10. V. D. Blank, M. S. Kuznetsov, S. Nosukhin, et al., Diamond Relat. Mater. 16, 800 (2007).

    Article  ADS  Google Scholar 

  11. S. Polyakov, V. Denisov, N. Kuzmin, et al., Diamond Relat. Mater. 20, 726 (2011).

    Article  ADS  Google Scholar 

  12. S. Terentyev, V. Blank, S. Polyakov, et al., Appl. Phys. Lett. 107, 111108 (2015).

  13. V. N. Reshetov, I. V. Krasnogorov, V. V. Solov’ev, et al., Nanoindustriya, Nos. 7–8, 466 (2022).

  14. A. Abboud, C. Kirchlechner, J. Keckes, et al., J. Appl. Crystallogr. 50, 901 (2017).

    Article  ADS  Google Scholar 

  15. P. C. Wang, G. S. Cargill, and I. C. Noyan, MRS Online Proc. Libr. 375, 247 (1994).

    Article  Google Scholar 

  16. S. Tardif, A. Gassenq, K. Guilloy, et al., J. Appl. Crystallogr. 49, 1402 (2016).

    Article  ADS  Google Scholar 

  17. X. Huang, J. Appl. Crystallogr. 43, 926 (2010).

    Article  ADS  Google Scholar 

  18. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body (Nauka, Moscow, 1977), p. 87 [in Russian].

    Google Scholar 

  19. L. Xing, K. Zhang, P. Liu, et al., Proc. SPIE 12169, 1216982 (2022).

  20. S. Tardif, A. Gassenq, K. Guilloy, et al., J. Appl. Crystallogr. 43, 926 (2010).

    Article  Google Scholar 

  21. M. Morita and O. Umezawa, in Optical Measurements, Modeling, and Metrology, Proceedings of the 2011 Annual Conference on Experimental and Applied Mechanics (Springer, New York, 2011), Vol. 5, p. 91.

  22. P. Qi, X. Shi, N. Samadi, et al., Proc. SPIE 11108, 111080E (2019).

  23. M. A. Doronin, S. N. Polyakov, K. S. Kravchuk, et al., Diamond Relat. Mater. 87, 149 (2018).

    Article  ADS  Google Scholar 

  24. Yu. I. Sirotin and M. P. Shaskol’skaya, The Principles of Crystal Physics (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  25. B. P. Sorokin, G. M. Kvashnin, M. S. Kuznetsov, et al., Zh. SFU, Ser. Mat. Fiz. 6 (1) (2013).

Download references

ACKNOWLEDGMENTS

The experiments were carried out on the equipment of the Research of Nanostructured, Carbon, and Superhard Materials core facility of the Technological Institute for Superhard and Novel Carbon Materials.

Funding

The work was carried out within the framework of a state task for 2023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. V. Digurov or S. N. Polyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Digurov, R.V., Blank, V.D., Denisov, V.N. et al. Determination of the Strain Tensor and the Elastic Stress Fields in a Diamond Plate with a High Bending Curvature Using Local Laue Diffraction Data. J. Exp. Theor. Phys. 137, 763–771 (2023). https://doi.org/10.1134/S106377612312004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612312004X

Navigation