Skip to main content
Log in

Numerical investigation of the flow characteristics around two sequential cylinders with circular and square cross-sections

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Many efforts have been dedicated to examining the flow characteristics around a pair of cylinders. Despite the straightforward geometry, the flow dynamics around a cylinder prove to be intricate. The practical applications of this phenomenon extend across various engineering domains, including oil and gas transmission lines, heat exchangers, pipelines, and the construction of successive skyscrapers. The current investigation delves into the examination of the critical distance ratio, fluctuating velocity, flow pattern, and drag surrounding two sequential circular and square cylinders. The governing equations are solved using the finite volume method (FVM). For momentum, turbulent kinetic energy, and turbulent dissipation rate equations, the upwind second-order discretization is used. The findings, acquired at a Reynolds number of 32,000 for distance ratios ranging from 0.25 to 10, are then compared with those from single-cylinder cases. The results highlight the significant influence of both geometry and the distance between cylinders on the observed flow patterns. The critical distance ratio is obtained as \(s_{c}\) = 2 and 2.5 for the case of two sequential circular and square cylinders, respectively, while for the case of combined circular and square cylinders, it is calculated as \(s_{c}\) = 3. The non-dimensional fluctuating velocity decreases by 7%, 26%, and 38% in the case of two sequential circular cylinders with distance ratios of S* = 1, 2, and 3 at the first station, respectively, compared to a single circular cylinder. The drag coefficient is 50% lower in the two sequential circular and square cylinders case compared to the single square cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(C_{D}\) :

Drag coefficient

\(C_{P}\) :

Pressure coefficient

CFl:

Courant number

D :

Diameter(mm)

\(F_{D}\) :

Drag force (kg \({\text{ms}}^{ - 2}\))

K :

Kinetic turbulent energy (\({\text{m}}^{2} {\text{s}}^{ - 2}\))

P :

Static pressure (kg \({\text{m}}^{ - 1} {\text{s}}^{ - 2}\))

\(p_{\infty }\) :

Ambient pressure (kg \({\text{m}}^{ - 1} {\text{s}}^{ - 2}\))

S :

Cylinders’ distance (mm)

\(s^{*}\) :

Cylinder distance to diameter ratio (mm)

\(s_{c}\) :

Critical distance ratio

St:

Strouhal number

T :

Time (s)

\(u_{i}{\prime}\), \(u_{j}{\prime}\) :

Fluctuating velocity components (m/s)

\(\overline{{u_{i}{\prime} u_{j}{\prime} }}\) :

Reynolds shear stress (\({\text{m}}^{2} {\text{s}}^{ - 2}\))

\(\overline{{u_{i} }}\), \(\overline{{u_{j} }}\) :

Mean velocity components (m/s)

\(U_{0}\) :

Inlet velocity (m/s)

\(\Delta x\) :

Spatial step (m)

\(\Delta t\) :

Time step (s)

\(\mu\) :

Dynamic viscosity (kg \({\text{m}}^{ - 1} {\text{s}}^{ - 1}\))

\(\vartheta\) :

Kinematic viscosity (\({\text{m}}^{2} {\text{s}}^{ - 1}\))

\(\rho\) :

Density (kg \({\text{m}}^{ - 3}\))

\(\sigma_{\omega }\) :

Effective diffusivity of k and ω

\(\omega\) :

Turbulence dissipation rate (\({\text{s}}^{ - 1}\))

References

  1. Yadegari M, Bak Khoshnevis A (2021) Investigation of entropy generation, efficiency, static and ideal pressure recovery coefficient in curved annular diffusers. Eur Phys J Plus 136:1–19. https://doi.org/10.1140/epjp/s13360-021-01071-1

    Article  Google Scholar 

  2. Yadegari M, Khoshnevis AB (2020) Numerical study of the effects of adverse pressure gradient parameter, turning angle and curvature ratio on turbulent flow in 3D turning curved rectangular diffusers using entropy generation analysis. Eur Phys J Plus 135(7):548. https://doi.org/10.1140/epjp/s13360-020-00561-y

    Article  Google Scholar 

  3. Yadegari M, Khoshnevis AB (2020) Entropy generation analysis of turbulent boundary layer flow in different curved diffusers in air-conditioning systems. Eur Phys J Plus 135(6):534. https://doi.org/10.1140/epjp/s13360-020-00545-y

    Article  Google Scholar 

  4. Yadegari M (2021) An optimal design for S-shaped air intake diffusers using simultaneous entropy generation analysis and multi-objective genetic algorithm. Eur Phys J Plus 136(10):1019. https://doi.org/10.1140/epjp/s13360-021-01999-4

    Article  Google Scholar 

  5. Yadegari M, Bak Khoshnevis A (2020) A numerical study over the effect of curvature and adverse pressure gradient on development of flow inside gas transmission pipelines. J Braz Soc Mech Sci Eng 42:1–15. https://doi.org/10.1007/s40430-020-02495-z

    Article  Google Scholar 

  6. Haghighatjoo H, Yadegari M, Bak Khoshnevis A (2022) Optimization of single-obstacle location and distance between square obstacles in a curved channel. Eur Phys J Plus 137(9):1042. https://doi.org/10.1140/epjp/s13360-022-03260-y

    Article  Google Scholar 

  7. Li J, Chambarel A, Donneaud M, Martin R (1991) Numerical study of laminar flow past one and two circular cylinders. Comput Fluids 19(2):155–170. https://doi.org/10.1016/0045-7930(91)90031-C

    Article  Google Scholar 

  8. Williamson C (1985) Sinusoidal flow relative to circular cylinders. J Fluid Mech 155:141–174. https://doi.org/10.1017/S0022112085001756

    Article  Google Scholar 

  9. Silva ALE, Silveira-Neto A, Damasceno J (2007) Numerical simulation of two-dimensional complex flows over bluff bodies using the immersed boundary method. J Braz Soc Mech Sci Eng 29(4):379387

    Article  Google Scholar 

  10. Zdravkovich MM (1997) Flow around circular cylinders. Applications 2:1–87. https://doi.org/10.1007/s10409-008-0217-3

    Article  Google Scholar 

  11. Wang Y, Cheng W, Du R, Wang S, Deng Y (2020) Numerical investigation of flow around two tandem identical trapezoidal cylinders. Math Probl Eng 2020:1–13. https://doi.org/10.1155/2020/3759834

    Article  MathSciNet  Google Scholar 

  12. Gao Y, Etienne S, Wang X, Tan SK (2014) Experimental study on the flow around two tandem cylinders with unequal diameters. J Ocean Univ China 13(5):761–770. https://doi.org/10.1007/s11802-014-2377-z

    Article  Google Scholar 

  13. Ota T, Nishiyama H (1986) Flow around two elliptic cylinders in tandem arrangement. J Fluds 108(1):98–103. https://doi.org/10.1115/1.3242551

    Article  Google Scholar 

  14. Shui Q, Duan C, Wang D, Gu Z (2021) New insights into numerical simulations of flow around two tandem square cylinders. AIP Adv 11(4):045315–045329. https://doi.org/10.1063/5.0042797

    Article  Google Scholar 

  15. Sohankar A (2012) A numerical investigation of the flow over a pair of identical square cylinders in a tandem arrangement. Int J Numer Meth Fluids 70(10):1244–1257. https://doi.org/10.1002/fld.2739

    Article  MathSciNet  Google Scholar 

  16. Charles T, Yang Z, Lu Y (2021) Computational study of flow around 2D and 3D tandem bluff bodies. J Appl Computat Mech 7(2):528–534. https://doi.org/10.22055/jacm.2020.35159.2583

    Article  Google Scholar 

  17. Ma Y, Mohebbi R, Rashidi M, Yang Z (2018) Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method. Int J Mod Phys C 29(04):1850030. https://doi.org/10.1142/S0129183118500304

    Article  Google Scholar 

  18. Xiaoqing D, Ruyi C, Hanlin X, Wenyong M (2019) Experimental study on aerodynamic characteristics of two tandem square cylinders. Fluid Dyn Res 51(5):055508. https://doi.org/10.1088/1873-7005/ab37b3

    Article  Google Scholar 

  19. Lankadasu A, Vengadesan S (2008) Interference effect of two equal-sized square cylinders in tandem arrangement: with planar shear flow. Int J Numer Meth Fluids 57(8):1005–1021. https://doi.org/10.1002/fld.1670

    Article  Google Scholar 

  20. Liu C-H, Chen JM (2002) Observations of hysteresis in flow around two square cylinders in a tandem arrangement. J Wind Eng Ind Aerodyn 90(9):1019–1050. https://doi.org/10.1016/S0167-6105(02)00234-9

    Article  Google Scholar 

  21. Zhang H, Melbourne W (1992) Interference between two circular cylinders in tandem in turbulent flow. J Wind Eng Ind Aerodyn 41(1–3):589–600. https://doi.org/10.1016/0167-6105(92)90468-P

    Article  Google Scholar 

  22. Carmo B, Meneghini J (2006) Numerical investigation of the flow around two circular cylinders in tandem. J Fluids Struct 22(6–7):979–988. https://doi.org/10.1016/j.jfluidstructs.2006.04.016

    Article  Google Scholar 

  23. Kitagawa T, Ohta H (2008) Numerical investigation on flow around circular cylinders in tandem arrangement at a subcritical Reynolds number. J Fluids Struct 24(5):680–699. https://doi.org/10.1016/j.jfluidstructs.2007.10.010

    Article  Google Scholar 

  24. Zhou Q, Alam MM, Cao S, Liao H, Li M (2019) Numerical study of wake and aerodynamic forces on two tandem circular cylinders at Re = 103. Phys Fluids 31(4):045103. https://doi.org/10.1063/1.5087221

    Article  Google Scholar 

  25. Li T, Ishihara T (2021) Numerical study on wake galloping of tandem circular cylinders considering the effects of mass and spacing ratios. J Wind Eng Ind Aerodyn 210:104536. https://doi.org/10.1016/j.jweia.2021.104536

    Article  Google Scholar 

  26. Yadegari M, Bak Khoshnevis A (2021) Numerical and experimental study of characteristics of the wake produced behind an elliptic cylinder with trip wires. Iran J Sci Technol Trans Mech Eng 45(1):265–285. https://doi.org/10.1007/s40997-020-00373-6

    Article  Google Scholar 

  27. Yadegari M, Bak Khoshnevis A, Boloki M (2023) An experimental investigation of the effects of helical strakes on the characteristics of the wake around the circular cylinder. Iran J Sci Technol Trans Mech Eng 47(1):67–80. https://doi.org/10.1007/s40997-022-00494-0

    Article  Google Scholar 

  28. Mansouri Z, Yadegari M, Bak Khoshnevis A (2023) Numerical investigation of the effects of installing four trip wires with different diameters on the mean and fluctuation velocities and characteristics of the wake around the circular cylinder. J Braz Soc Mech Sci Eng 45(9):459. https://doi.org/10.1007/s40430-023-04409-1

    Article  Google Scholar 

  29. Bak Khoshnevis A, Boloki M, Yadegari M (2020) The investigation of the effect of the helical strakes’ height on the cylindrical wake. J Sol Fluid Mech 10(1):223–236. https://doi.org/10.22044/JSFM.2019.8568.2949

    Article  Google Scholar 

  30. Ezadi Yazdi MJ, Rad AS, Khoshnevis AB (2019) Features of the flow over a rotating circular cylinder at different spin ratios and Reynolds numbers: experimental and numerical study. Eur Phys J Plus 134:1–21. https://doi.org/10.1140/epjp/i2019-12508-3

    Article  Google Scholar 

  31. Allan M (2002) A CFD investigation of wind tunnel interference on delta wing aerodynamics. University of Glasgow. Doctoral dissertation

  32. Igarashi T (1997) Drag reduction of a square prism by flow control using a small rod. J Wind Eng Ind Aerodyn 69:141–153. https://doi.org/10.1016/S0167-6105(97)00150-5

    Article  Google Scholar 

  33. Campos-Arriaga L (2009) Wind energy in the built environment: a design analysis using CFD and wind tunnel modelling approach. Doctoral dissertation

  34. Roshko A (1969) On the persistence of transition in the near-wake. Prob Hydrodyn Contin Mech 1:606–616. https://doi.org/10.1006/jfls.1995.1023

    Article  Google Scholar 

  35. Ozgoren M (2006) Flow structure in the downstream of square and circular cylinders. Flow Meas Instrum 17(4):225–235. https://doi.org/10.1016/j.flowmeasinst.2005.11.005

    Article  Google Scholar 

  36. Luo D, Yan C, Liu H, Zhao R (2014) Comparative assessment of PANS and DES for simulation of flow past a circular cylinder. J Wind Eng Ind Aerodyn 134:65–77. https://doi.org/10.1016/j.jweia.2014.08.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bak Khoshnevis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M., Yadegari, M. & Khoshnevis, A.B. Numerical investigation of the flow characteristics around two sequential cylinders with circular and square cross-sections. J Mar Sci Technol (2024). https://doi.org/10.1007/s00773-024-00987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00773-024-00987-4

Keywords

Navigation