Skip to main content
Log in

Influence of Ni additions on microstructure, non-magnetic properties, and wear resistance of Fe–Mn-Cr alloy deposited by metal-cored arc welding

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In this study, we propose Fe–Mn-Cr/Ni as an economical drill collar overlay material applied via metal-cored arc welding (MCAW). A series of Fe–Mn-Cr/Ni overlay alloys with different Ni contents were prepared by MCAW, and their microstructure, non-magnetic, and wear properties were systematically investigated. The results show that the addition of Ni element can effectively improve the austenitization of the Fe–Mn-Cr/Ni overlay alloy and inhibit the formation of ferromagnetic hexagonal martensite (ε) and body-centered ferrite (α), thus improving the non-magnetic properties of the Fe–Mn-Cr/Ni overlay. With the increase of Ni addition from 0.6 to 4.7 wt.%, the average grain size gradually increases from 21.69 to 49.97 µm, and the overlay microstructure gradually evolves from columnar-like ε-martensite to wide ε-martensite band and eventually almost austenite. This change in microstructure as Ni content increases contributes to the reduction of relative permeability from 2.225 to 1.057 due to the increased austenite contents, at the cost of increased wear rate from 2.61 × 10−5 to 4.55 × 10−5 mm3·N−1·m−1 due to the decay of wear-resistant ε-martensite skeleton. By controlling the Ni content, this work demonstrates the potential of preparing Fe-based austenitic wear-resistant layers with high Mn content and broadens the scope of austenitic non-magnetic deposited alloys for surface overlay strengthening or repairing of Fe-based non-magnetic drilling tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Edwards J, Pernet F, Jakeman SVJ (1979) Magnetic properties of nonmagnetic drill collars and their relation to survey compass error. Geoexploration 17(3):229–241. https://doi.org/10.1016/0016-7142(79)90018-8

    Article  Google Scholar 

  2. Islam MR, Hossain ME (2021) Chapter 3. Advances in directional drilling. In: Islam MR, Hossain ME (eds) drilling engineering, 179–316. https://doi.org/10.1016/B978-0-12-820193-0.00003-4

  3. Qu HP, Chen HT, Cao CX, Lang YP, Zhang SX, Cui Y (2017) Mechanism research on accelerated embrittlement phenomenon of a warm-deformed Cr-Mn-Ni-Mo-N austenitic stainless steel. Mater Sci Eng A 680:1–12. https://doi.org/10.1016/j.msea.2016.10.074

    Article  CAS  Google Scholar 

  4. Sarkar T, Pramanick AK, Pal TK, Pramanick AK (2018) Development of a new coated electrode with low nickel content for welding ductile iron and its response to austempering. Int J Miner Metall Mater 25(9):1090–1103. https://doi.org/10.1007/s12613-018-1660-1

    Article  CAS  Google Scholar 

  5. Yang J, Miao X, Wang X, Yang F (2014) Influence of Mn additions on the microstructure and magnetic properties of FeNiCr/60% WC composite coating produced by laser cladding. Int J Refract Met Hard Mater 46:58–64. https://doi.org/10.1016/j.ijrmhm.2014.05.010

    Article  CAS  Google Scholar 

  6. Michler T, Naumann J (2010) Hydrogen embrittlement of Cr-Mn-N-austenitic stainless steels. Int J Hydrogen Energy 35(3):1485–1492. https://doi.org/10.1016/j.ijhydene.2009.10.050

    Article  CAS  Google Scholar 

  7. Zhou Z, Fu W, Zhu Z, Li B, Shi Z, Sun S (2018) Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon CrMnN stainless steel through quenching and partitioning treatment. Int J Miner Metall Mater 25(5):547–553. https://doi.org/10.1007/s12613-018-1601-z

    Article  CAS  Google Scholar 

  8. Jiang Z, Zhang Z, Li H, Li Z, Qifeng M (2010) Microstructural evolution and mechanical properties of aging high nitrogen austenitic stainless steels. Int J Miner Metall Mater 17(6):729–736. https://doi.org/10.1007/s12613-010-0381-x

    Article  CAS  Google Scholar 

  9. Dharmik BY, Lautre NK (2023) CMT and GTA welding on microstructural characteristics and magnetic performance of thin CRNO electrical steel sheets. Mater Chem Phys 295:127128. https://doi.org/10.1016/j.matchemphys.2022.127128

    Article  CAS  Google Scholar 

  10. Świerczyńska A, Varbai B, Pandey C, Fydrych D (2024) Exploring the trends in flux-cored arc welding: scientometric analysis approach. Int J Adv Manuf Technol 130(1):87–110. https://doi.org/10.1007/s00170-023-12682-6

    Article  Google Scholar 

  11. Weman K (2012) MIG/MAG welding. In: Weman K (ed) welding processes handbook, 75–97. https://doi.org/10.1533/9780857095183.75

  12. Chen J, Xie W, Liu R, Wei Y (2021) Microstructure and wear resistance of Fe-based hardfacing layer prepared by flux-cored wire feeding MAG welding process. Weld World 66. https://doi.org/10.1007/s40194-021-01209-w

  13. Yang J, Hou X, Zhang P, Zhou Y, Yang Y, Ren X, Yang Q (2016) Mechanical properties of the hypereutectoid Fe–Cr–C hardfacing coatings with different nano-Y2O3 additives and the mechanism analysis. Mater Sci Eng A 655:346–354. https://doi.org/10.1016/j.msea.2015.12.087

    Article  CAS  Google Scholar 

  14. Wolski A, Świerczyńska A, Lentka G, Fydrych D (2024) Storage of high-strength steel flux-cored welding wires in urbanized areas. Int J Precis Eng Manuf-Green Technol 11(1):55–70. https://doi.org/10.1007/s40684-023-00527-2

    Article  Google Scholar 

  15. Zhang B, Wang H, Zhang S, He B (2023) Optimization of the dilution parameters to improve wear resistance of laser cladding 15–5PH steel coating on U75V pearlitic steel. Surf Coat Technol 465:129571. https://doi.org/10.1016/j.surfcoat.2023.129571

    Article  CAS  Google Scholar 

  16. Yang J, Xiao Z, Yang F, Chen H, Wang X, Zhou S (2018) Microstructure and magnetic properties of NiCrMoAl/WC coatings by laser cladding: effect of WC metallurgical behaviors. Surf Coat Technol 350:110–118. https://doi.org/10.1016/j.surfcoat.2018.07.021

    Article  CAS  Google Scholar 

  17. Yin H, Song W, Liu Q, Zhu G, Zhang J, Yu Y, Yin C (2022) Effect of different contents of WC on microstructure and properties of NiCrMo coatings prepared by PTA. Coatings 12(10):1574. https://doi.org/10.3390/coatings12101574

    Article  CAS  Google Scholar 

  18. Huang W, Zhao J, Wang S (2019) Necessity of multidimensional evaluation of the high-speed ball-end milled surface of hardened AISI D2 steel from a wear resistance perspective. Int J Adv Manuf Technol 103(9):4085–4093. https://doi.org/10.1007/s00170-019-03768-1

    Article  Google Scholar 

  19. Hammond C (1964) Mise au point d’aciers inoxydables du type maraging contenant du cobalt. Cobalt 25:195–202

    CAS  Google Scholar 

  20. Ruan J, Ueshima N, Li H, Oikawa K (2021) Phase equilibria, martensitic transformations and deformation behaviors of the subsystem of Cantor alloy−low-cost Fe-Mn-Cr alloys. Materialia 20:101231. https://doi.org/10.1016/j.mtla.2021.101231

    Article  CAS  Google Scholar 

  21. Lee SJ, Lee YK (2008) Prediction of austenite grain growth during austenitization of low alloy steels. Mater Des 29(9):1840–1844. https://doi.org/10.1016/j.matdes.2008.03.009

    Article  CAS  Google Scholar 

  22. Li Y, Wang C (2023) The role of austenite grain size on martensite start temperature and phase transformation path in SUS321 stainless steel. Mater Lett 342:134313. https://doi.org/10.1016/j.matlet.2023.134313

    Article  CAS  Google Scholar 

  23. Gungunes H, Yasar E, Durlu TN (2007) The effect of austenitizing time on martensite morphologies and magnetic properties of martensite in Fe–24.5%Ni–4.5%Si alloy. J Mater Sci 42(15):6102–6107. https://doi.org/10.1007/s10853-006-1125-1

    Article  ADS  CAS  Google Scholar 

  24. Tian Y, Lienert U, Borgenstam A, Fischer T, Hedström P (2017) Martensite formation during incremental cooling of Fe-Cr-Ni alloys: an in-situ bulk X-ray study of the grain-averaged and single-grain behavior. Scr Mater 136:124–127. https://doi.org/10.1016/j.scriptamat.2017.04.020

    Article  CAS  Google Scholar 

  25. Wang J, Xi X, Li Y, Wang C, Xu W (2019) New insights on nucleation and transformation process in temperature-induced martensitic transformation. Mater Charact 151:267–272. https://doi.org/10.1016/j.matchar.2019.03.023

    Article  CAS  Google Scholar 

  26. Zaoui Y, Bendaoud H, Obodo KO, Beldi L, Bouhafs B (2020) Competition between the hcp nonmagnetic and antiferromagnetic phases in the transition path of Fe under pressure. J Magn Magn Mater 499:166312. https://doi.org/10.1016/j.jmmm.2019.166312

    Article  CAS  Google Scholar 

  27. Cotes S, Guillermet A, Sade M (2004) Fcc/Hcp martensitic transformation in the Fe-Mn system: part II. Driving force and thermodynamics of the nucleation process. Metall Mater Trans A 35:83–91. https://doi.org/10.1007/s11661-004-0111-y

    Article  Google Scholar 

  28. Chowdhury SG, Datta S, Kumar BR, De PK, Ghosh RN (2007) Randomization of texture during recrystallization of austenite in a cold rolled metastable austenitic stainless steel. Mater Sci Eng A 443(1):114–119. https://doi.org/10.1016/j.msea.2006.09.059

    Article  CAS  Google Scholar 

  29. Skomski R, Manchanda P, Kashyap A (2020) Anisotropy and crystal field. In: Skomski R, Manchanda P, Kashyap A (eds) Handbook of magnetism and magnetic materials, 125–127. https://doi.org/10.1007/978-3-030-63101-7_3-1

  30. Moskowitz BM (2002) Magnetic anisotropy. In: Moskowitz BM (ed) Hitchhiker’s guide to magnetism, pp 16–20. http://www.magneticmicrosphere.com/resources/hitchhiker_guide_to_magnetism.pdf

  31. Zhang A, Han J, Su B, Meng J (2018) A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater Sci Eng A 731:36–43. https://doi.org/10.1016/j.msea.2018.06.030

    Article  CAS  Google Scholar 

  32. Karami Nezhad K, Kahrobaee S, Ahadi Akhlaghi I (2019) Application of magnetic hysteresis loop method to determine prior austenite grain size in plain carbon steels. J Magn Magn Mater 477:275–282. https://doi.org/10.1016/j.jmmm.2019.01.074

    Article  ADS  CAS  Google Scholar 

  33. Huang M, Wang L, Wang C, Mogucheva A, Xu W (2022) Characterization of deformation-induced martensite with various AGSs upon Charpy impact loading and correlation with transformation mechanisms. Mater Charact 184:111704. https://doi.org/10.1016/j.matchar.2021.111704

    Article  CAS  Google Scholar 

  34. Xue D, Chai G, Li X, Fan X (2008) Effects of grain size distribution on coercivity and permeability of ferromagnets. J Magn Magn Mater 320(8):1541–1543. https://doi.org/10.1016/j.jmmm.2008.01.004

    Article  ADS  CAS  Google Scholar 

  35. Yan X, Hu J, Yu H, Wang C, Xu W (2021) Unraveling the significant role of retained austenite on the dry sliding wear behavior of medium manganese steel. Wear 476:203745. https://doi.org/10.1016/j.wear.2021.203745

    Article  CAS  Google Scholar 

  36. Li C, Sun R, Li Y, Zhao Z, Qi X, Pei M, Li F, Li J (2023) Wear mechanism of a laser cladded Fe-based self-lubricating composite coating for protecting counter-abrasive parts. Surf Coat Technol 459:129402. https://doi.org/10.1016/j.surfcoat.2023.129402

    Article  CAS  Google Scholar 

  37. Tong Y, Zhang T, Zhang S (2023) Influence of oxides on the formation of self-lubricating layer and anti-wear performance during sliding. Tribol Int 179:108188. https://doi.org/10.1016/j.triboint.2022.108188

    Article  CAS  Google Scholar 

  38. Huang J, Sun W, Chu X, Lan H, Xie Y, Ye D, Huang R (2023) Effect of high temperature exposure on microstructure, mechanical and tribological properties of cold sprayed NiCoCrAlTaY coatings. Surf Coat Technol 462:129466. https://doi.org/10.1016/j.surfcoat.2023.129466

    Article  CAS  Google Scholar 

  39. Suh PN (1973) The delamination theory of wear. Wear 25(1):111–124. https://doi.org/10.1016/0043-1648(73)90125-7

    Article  CAS  Google Scholar 

  40. Rigney DA, Chen LH, Naylor MGS, Rosenfield AR (1984) Wear processes in sliding systems. Wear 100(1):195–219. https://doi.org/10.1016/0043-1648(84)90013-9

    Article  CAS  Google Scholar 

  41. Fan L, Chen H, Dong Y, Dong L, Yin Y (2018) Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel. Int J Miner Metall Mater 25(6):716–728. https://doi.org/10.1007/s12613-018-1619-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Collaborative Innovation Project of the Bureau of Science, Technology and Information of Chaoyang District, Beijing (CYXC2103).

Author information

Authors and Affiliations

Authors

Contributions

Zhiheng Qin: investigation, methodology, writing—original draft, preparation, data curation. Dingyong He: methodology, supervision, funding acquisition, project administration. Lixia Ma: supervision, methodology, conceptualization, formal analysis, visualization, writing—review and editing. Chengxing He: writing—review and editing. Xu Wu: resource, methodology. Guohong Wang: resource, methodology.

Corresponding author

Correspondence to Lixia Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission II - Arc Welding and Filler Metals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., He, D., Ma, L. et al. Influence of Ni additions on microstructure, non-magnetic properties, and wear resistance of Fe–Mn-Cr alloy deposited by metal-cored arc welding. Weld World 68, 699–714 (2024). https://doi.org/10.1007/s40194-024-01694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-024-01694-9

Keywords

Navigation