Skip to main content
Log in

Establishment and simplification of micromechanical material model for viscoelastic woven fabric/hybrid composite

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present research focuses on proposing a novel theoretical micromechanical model (TMM) designed to derive the frequency-dependent storage and loss moduli of woven fabric (WF)-matrix composites, as well as WF-particulate matrix (Hybrid) composites, based on their constituent properties. The TMM serves as a higher-order modulus operator, accounting for the composite woven fabric unit cell geometry and the effective modulus of both the fabric and matrix using equivalent modulus theory. This model also incorporates viscoelastic parameters obtained from literature and experiments for each constituent, namely woven glass fabric and SiC particles embedded in an epoxy matrix. The proposed TMM is validated by comparing its predictions of the frequency-dependent storage modulus and loss factor with experimental data acquired through dynamic mechanical analyzer tests on samples with varying fiber and particulate volume fractions. To address the inherent complexities of the higher-order modulus operator, the model is streamlined into a lower-order form expressed as a function of two separate variables: volume fraction and a differential time operator. This advancement enhances the applicability and usability of the model for predicting the mechanical behaviour of these complex composite materials. This novel mathematical model eliminates the cost and time for conducting the explicit experiments as well as can be applied to different range of similar hybrid composites considering the fact that the constituent properties are known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Gutteridge, P.A., Waterman, N.A.: Computer-aided materials selection. In: Bever, M.B. (ed.) Encyclopedia of materials science and engineering. Pergamon Press, Oxford (1986)

    Google Scholar 

  2. Mazumdar, S.: Composites manufacturing: materials, product, and process engineering. CRC Press, USA (2001)

    Book  Google Scholar 

  3. Vasiliev, V.V., Morozov, E.V.: Advanced mechanics of composite materials and structural elements. Elsevier, Newnes (2013)

    Google Scholar 

  4. Oller, S.: Numerical simulation of mechanical behavior of composite materials. Springer International Publishing, Cham (2014)

    Book  Google Scholar 

  5. Agarwal, B.D., Broutman, L.J., Chandrashekhara, K.: Analysis and performance of fibre composites. John Wiley & Sons, UK (2017)

    Google Scholar 

  6. Cai, R., Jin, T.: The effect of microstructure of unidirectional fibre-reinforced composites on mechanical properties under transverse loading: a review. J. Reinf. Plast. Compos. 37(22), 1360–1377 (2018)

    Article  CAS  Google Scholar 

  7. Ganguly, K., Raj, A., Roy, H.: Modelling and comparative study of viscoelastic laminated composite beam – an operator based finite element approach. Mech. Time-Depend. Mater. 25(4), 691–710 (2020). https://doi.org/10.1007/s11043-020-09469-7

    Article  ADS  Google Scholar 

  8. Mazaheri, A.H., Taheri-behrooz, F.: A new constitutive model to predict effective elastic properties of plain weave fabric composites. Struct. Eng. Mech. An Int’l J. 77(5), 651–659 (2021)

    Google Scholar 

  9. Naik, N.K., Ganesh, V.K.: An analytical method for plain weave fabric composites. Composites 26(4), 281–289 (1995)

    Article  Google Scholar 

  10. Scida, D., Aboura, Z., Benzeggagh, M.L., Bocherens, E.: Prediction of the elastic behaviour of hybrid and non-hybrid woven composites. Compos. Sci. Technol. 57(12), 1727–1740 (1998)

    Article  Google Scholar 

  11. Tabiei, A., Jiang, Y.: Woven fabric composite material model with material nonlinearity for nonlinear finite element simulation. Int. J. Solids Struct. 36(18), 2757–2771 (1999)

    Article  Google Scholar 

  12. Tabiei, A., Yi, W.: Comparative study of predictive methods for woven fabric composite elastic properties. Compos. Struct. 58(1), 149–164 (2002)

    Article  Google Scholar 

  13. Adumitroaie, A., Barbero, E.J.: Stiffness and strength prediction for plain weave textile reinforced composites. Mech. Adv. Mater. Struct. 19(1–3), 169–183 (2012)

    Article  Google Scholar 

  14. Madeo, A., Barbagallo, G., d’Agostino, M.V., Boisse, P.: Continuum and discrete models for unbalanced woven fabrics. Int. J. Solids Struct. 94, 263–284 (2016)

    Article  Google Scholar 

  15. Dickson, A.N., Ross, K.A., Dowling, D.P.: Additive manufacturing of woven carbon fibre polymer composites. Compos. Struct. 206, 637–643 (2018)

    Article  CAS  Google Scholar 

  16. Mulay, S.S., Udhayaraman, R.: On the constitutive modelling and damage behaviour of plain woven textile composite. Int. J. Solids Struct. 156, 73–86 (2019)

    Article  Google Scholar 

  17. Claus, J., Santos, R.A., Gorbatikh, L., Swolfs, Y.: Effect of matrix and fibre type on the impact resistance of woven composites. Compos. B Eng. 183, 107736 (2020)

    Article  CAS  Google Scholar 

  18. Aisyah, H.A., Paridah, M.T., Sapuan, S.M., Ilyas, R.A., Khalina, A., Nurazzi, N.M., Lee, S.H., Lee, C.H.: A Comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers 13(3), 471 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Z., Xie, H., Luo, Q., Li, Q., Sun, G.: Optimizaition for formability of plain woven carbon fibre fabrics. Int. J. Mech. Sci. 197, 106318 (2021)

    Article  Google Scholar 

  20. Kyriazoglou, C., Guild, F.J.: Quantifying the effect of homogeneous and localized damage mechanisms on the damping properties of damaged GFRP and CFRP continuous and woven composite laminates—an FEA approach. Compos. A Appl. Sci. Manuf. 36(3), 367–379 (2005)

    Article  Google Scholar 

  21. Kıral, Z., İçten, B.M., Kıral, B.G.: Effect of impact failure on the damping characteristics of beam-like composite structures. Compos. B Eng. 43(8), 3053–3060 (2012)

    Article  Google Scholar 

  22. Duc, F., Bourban, P.E., Plummer, C.J.G., Månson, J.A.: Damping of thermoset and thermoplastic flax fibre composites. Compos. A Appl. Sci. Manuf. 64, 115–123 (2014)

    Article  CAS  Google Scholar 

  23. Hirsekorn, M., Marcin, L., Godon, T.: Multi-scale modeling of the viscoelastic behavior of 3D woven composites. Compos. A Appl. Sci. Manuf. 112, 539–548 (2018)

    Article  CAS  Google Scholar 

  24. Bhattacharjee, A., Roy, H.: A micro-mechanical model of viscoelastic woven fabric composites using operator based approach. Math. Comput. Simul 190, 587–606 (2021)

    Article  MathSciNet  Google Scholar 

  25. Suresha, B., Chandramohan, G., Renukappa, N.M.: Mechanical and tribological properties of glass–epoxy composites with and without graphite particulate filler. J. Appl. Polym. Sci. 103(4), 2472–2480 (2007)

    Article  CAS  Google Scholar 

  26. Agarwal, G., Patnaik, A., Sharma, R.K.: Thermo-mechanical properties of silicon carbide filled chopped glass fibre reinforced epoxy composites. Int. J. Adv. Struct. Eng. 5(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  27. Mujika, F., Vargas, G., Ibarretxe, J., De Gracia, J., Arrese, A.: Influence of the modification with MWCNT on the interlaminar fracture properties of long carbon fibre composites. Compos. B Eng. 43(3), 1336–1340 (2012)

    Article  CAS  Google Scholar 

  28. Rahman, M.M., Zainuddin, S., Hosur, M.V., Malone, J.E., Salam, M.B.A., Kumar, A., Jeelani, S.: Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs. Compos. Struct. 94(8), 2397–2406 (2012)

    Article  Google Scholar 

  29. Baptista, R., Mendão, A., Rodrigues, F., Figueiredo-Pina, C.G., Guedes, M., Marat-Mendes, R.: Effect of high graphite filler contents on the mechanical and tribological failure behavior of epoxy matrix composites. Theoret. Appl. Fract. Mech. 85, 113–124 (2016)

    Article  CAS  Google Scholar 

  30. Huang, C.Y., Tsai, J.L.: Characterizing vibration damping response of composite laminates containing silica nanoparticles and rubber particles. J. Compos. Mater. 49(5), 545–557 (2015)

    Article  ADS  Google Scholar 

  31. Saba, N., Jawaid, M., Alothman, O.Y., Paridah, M.T.: A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 106, 149–159 (2016)

    Article  CAS  Google Scholar 

  32. Ramakrishna, K.B.S.S., Babu, S.B., Nagaraju, B., Prasad, K.S.: Experimental investigation on tensile and damping properties of SIC and flyash reinforced glass fibre epoxy composites. J. Recent Trends Mech. 1(1–3), 10–19 (2016)

    Google Scholar 

  33. De Fenza, A., Monaco, E., Amoroso, F., Lecce, L.: Experimental approach in studying temperature effects on composite material structures realized with viscoelastic damping treatments. J. Vib. Control 22(2), 358–370 (2016)

    Article  Google Scholar 

  34. Bulut, M., Alsaadi, M., Erkliğ, A.: A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles. Mater. Res. Express 5(2), 025301 (2018)

    Article  ADS  Google Scholar 

  35. Liu, H., Falzon, B.G., Dear, J.P.: An experimental and numerical study on the crush behaviour of hybrid unidirectional/woven carbon-fibre reinforced composite laminates. Int. J. Mech. Sci. 164, 105160 (2019)

    Article  Google Scholar 

  36. Bhattacharjee, A., Roy, H.: Assessment of tensile and damping behaviour of hybrid particle/woven fibre/polymer composites. Compos. Struct. 244, 112231 (2020)

    Article  Google Scholar 

  37. Bhattacharjee, A., Ganguly, K., Roy, H.: An operator based novel micromechanical model of viscoelastic hybrid woven fibre-particulate reinforced polymer composites. Eur. J. Mech.-A/Solids 83, 104044 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  38. Nielsen, L.E.: Generalized equation for the elastic moduli of composite materials. J. Appl. Phys. 41(11), 4626–4627 (1970)

    Article  ADS  Google Scholar 

  39. Roy, H., Dutt, J.K.: Dynamics of polymer and polymer composite rotors–An operator based finite element approach. Appl. Math. Model. 40(3), 1754–1768 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the financial support received from the Ministry of Human Resource and Development (MHRD), Govt. of India during the period of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Roy.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$E_{eq}^{WFC} \left( {} \right) = \frac{{p_{0}^{WFC} + p_{1}^{WFC} D + p_{2}^{WFC} D^{2} + p_{3}^{WFC} D^{3} + p_{4}^{WFC} D^{4} }}{{q_{0}^{WFC} + q_{1}^{WFC} D + q_{2}^{WFC} D^{2} + q_{3}^{WFC} D^{3} }}$$
(39)

where,

$$p_{0}^{WFC} = c_{1} a_{0}^{l} b_{0}^{s} b_{0}^{m} + c_{2} a_{0}^{s} b_{0}^{l} b_{0}^{m} + c_{3} a_{0}^{m} b_{0}^{s} b_{0}^{l}$$
$$\begin{aligned} p_{1}^{WFC} = & \;\;c_{1} \left( {a_{1}^{l} b_{0}^{s} b_{0}^{m} + a_{0}^{l} b_{1}^{s} b_{0}^{m} + a_{0}^{l} b_{0}^{s} b_{1}^{m} } \right) \\ & \;\; + c_{2} \left( {a_{1}^{s} b_{0}^{l} b_{0}^{m} + a_{0}^{s} b_{1}^{l} b_{0}^{m} + a_{0}^{s} b_{0}^{l} b_{1}^{m} } \right) \\ & \;\; + c_{3} \left( {a_{1}^{m} b_{0}^{s} b_{0}^{l} + a_{0}^{m} b_{1}^{s} b_{0}^{l} + a_{0}^{m} b_{0}^{s} b_{1}^{l} } \right) \\ \end{aligned}$$
$$\begin{aligned} p_{2}^{WFC} = & \;\;c_{1} \left( {a_{2}^{l} b_{0}^{s} b_{0}^{m} + a_{1}^{l} b_{1}^{s} b_{0}^{m} + a_{1}^{l} b_{0}^{s} b_{1}^{m} + a_{0}^{l} b_{1}^{s} b_{1}^{m} } \right) \\ & \;\; + c_{2} \left( {a_{2}^{s} b_{0}^{l} b_{0}^{m} + a_{1}^{s} b_{1}^{l} b_{0}^{m} + a_{1}^{s} b_{0}^{l} b_{1}^{m} + a_{0}^{s} b_{1}^{l} b_{1}^{m} } \right) \\ & \;\; + c_{3} \left( {a_{2}^{m} b_{0}^{s} b_{0}^{l} + a_{1}^{m} b_{1}^{s} b_{0}^{l} + a_{1}^{m} b_{0}^{s} b_{1}^{l} + a_{0}^{m} b_{1}^{s} b_{1}^{l} } \right) \\ \end{aligned}$$
$$\begin{aligned} p_{3}^{WFC} = & \;\;c_{1} \left( {a_{1}^{l} b_{1}^{s} b_{1}^{m} + a_{2}^{l} b_{1}^{s} b_{0}^{m} + a_{2}^{l} b_{0}^{s} b_{1}^{m} } \right) \\ & \;\; + c_{2} \left( {a_{1}^{s} b_{1}^{l} b_{1}^{m} + a_{2}^{s} b_{1}^{l} b_{0}^{m} + a_{2}^{s} b_{0}^{l} b_{1}^{m} } \right) \\ & \;\; + c_{3} \left( {a_{1}^{m} b_{1}^{s} b_{1}^{l} + a_{2}^{m} b_{1}^{s} b_{0}^{l} + a_{2}^{m} b_{0}^{s} b_{1}^{l} } \right) \\ \end{aligned}$$
$$p_{4}^{WFC} = c_{1} a_{2}^{l} b_{1}^{s} b_{1}^{m} + c_{2} a_{2}^{s} b_{1}^{l} b_{1}^{m} + c_{3} a_{2}^{m} b_{1}^{s} b_{1}^{l}$$
$$p_{5}^{WFC} = b_{0}^{l} b_{0}^{s} b_{0}^{m}$$
$$q_{0}^{WFC} = b_{0}^{l} b_{0}^{s} b_{0}^{m}$$
$$q_{1}^{WFC} = b_{0}^{l} b_{0}^{s} b_{1}^{m} + b_{0}^{l} b_{1}^{s} b_{0}^{m} + b_{1}^{l} b_{0}^{s} b_{0}^{m}$$
$$q_{2}^{WFC} = b_{0}^{l} b_{1}^{s} b_{1}^{m} + b_{1}^{l} b_{0}^{s} b_{1}^{m} + b_{1}^{l} b_{1}^{s} b_{0}^{m}$$
$$q_{3}^{WFC} = b_{1}^{l} b_{1}^{s} b_{1}^{m}$$
$$c_{1} = \frac{{\left( {A_{w} + A_{f} } \right)\lambda_{1} }}{{A_{c} }}, \, c_{2} = \frac{{\left( {A_{w} + A_{f} } \right)\lambda_{2} }}{{A_{c} }}, \, c_{3} = \frac{{A_{m} }}{{A_{c} }}$$

Appendix 2

$$\begin{aligned} E_{eq}^{HyC} \left( {} \right) = & \;\;\frac{{\lambda_{1} \left( {A_{w} + A_{f} } \right)}}{A}\left( {\frac{{a_{0}^{l} + a_{1}^{l} D + a_{2}^{l} D^{2} }}{{b_{0}^{l} + b_{1}^{l} D}}} \right) \\ & \;\; + \frac{{\lambda_{2} \left( {A_{w} + A_{f} } \right)}}{A}\left( {\frac{{a_{0}^{s} + a_{1}^{s} D + a_{2}^{s} D^{2} }}{{b_{0}^{s} + b_{1}^{s} D}}} \right) \\ & \;\; + \frac{{A_{m} }}{A}\left( {\frac{{a_{{_{0} }}^{em} + a_{{_{1} }}^{em} D + a_{{_{2} }}^{em} D^{2} + a_{{_{3} }}^{em} D^{3} + a_{{_{4} }}^{em} D^{4} }}{{b_{{_{0} }}^{em} + b_{{_{1} }}^{em} D + b_{{_{2} }}^{em} D^{2} + b_{{_{3} }}^{em} D^{3} }}} \right) \\ \end{aligned}$$
(40)

On solving and simplifying,

$$E_{eq}^{HyC} \left( {} \right) = \frac{{p_{0}^{HyC} + p_{1}^{HyC} D + p_{2}^{HyC} D^{2} + p_{3}^{HyC} D^{3} + p_{4}^{HyC} D^{4} + p_{5}^{HyC} D^{5} + p_{6}^{HyC} D^{6} + p_{7}^{HyC} D^{7} }}{{q_{0}^{HyC} + q_{1}^{HyC} D + q_{2}^{HyC} D^{2} + q_{3}^{HyC} D^{3} + q_{4}^{HyC} D^{4} + q_{5}^{HyC} D^{5} + q_{6}^{HyC} D^{6} }}$$
(41)

where,

$$p_{0}^{HyC} = c_{1} a_{0}^{l} b_{0}^{s} b_{{_{0} }}^{em} + c_{2} a_{0}^{s} b_{0}^{l} b_{{_{0} }}^{em} + c_{3} b_{0}^{s} b_{0}^{l} b_{{_{0} }}^{em}$$
$$\begin{aligned} p_{1}^{HyC} = & \;\;c_{1} \left( {a_{0}^{l} b_{0}^{s} b_{{_{1} }}^{em} + a_{1}^{l} b_{0}^{s} b_{{_{0} }}^{em} + a_{0}^{l} b_{1}^{s} b_{{_{0} }}^{em} } \right) \\ & \;\; + c_{2} \left( {a_{1}^{s} b_{0}^{l} b_{{_{0} }}^{em} + a_{0}^{s} b_{1}^{l} b_{{_{0} }}^{em} + a_{0}^{s} b_{0}^{l} b_{{_{0} }}^{em} } \right) \\ & \;\; + c_{3} \left( {b_{1}^{s} b_{0}^{l} a_{{_{0} }}^{em} + b_{0}^{s} b_{1}^{l} a_{{_{0} }}^{em} + b_{0}^{s} b_{0}^{l} a_{{_{1} }}^{em} } \right) \\ \end{aligned}$$
$$\begin{aligned} p_{2}^{HyC} = & \;\;c_{1} \left( {a_{0}^{l} b_{0}^{s} b_{2}^{em} + a_{1}^{l} b_{0}^{s} b_{1}^{em} + a_{0}^{l} b_{1}^{s} b_{1}^{em} + a_{1}^{l} b_{1}^{s} b_{0}^{em} + a_{2}^{l} b_{0}^{s} b_{0}^{em} } \right) \\ & \;\; + c_{2} \left( {a_{0}^{s} b_{0}^{l} b_{2}^{em} + a_{1}^{s} b_{0}^{l} b_{2}^{em} + a_{0}^{s} b_{1}^{l} b_{1}^{em} + a_{1}^{s} b_{1}^{l} b_{0}^{em} + a_{2}^{s} b_{0}^{l} b_{0}^{em} } \right) \\ & \;\; + c_{3} \left( {b_{1}^{s} b_{0}^{l} a_{1}^{em} + b_{0}^{s} b_{1}^{l} a_{1}^{em} + b_{0}^{s} b_{0}^{l} a_{2}^{em} + b_{1}^{s} b_{1}^{l} a_{0}^{em} } \right) \\ \end{aligned}$$
$$\begin{aligned} p_{3}^{HyC} = & \;\;c_{1} \left( {a_{0}^{l} b_{0}^{s} b_{3}^{em} + a_{1}^{l} b_{0}^{s} b_{2}^{em} + a_{0}^{l} b_{1}^{s} b_{2}^{em} + a_{1}^{l} b_{1}^{s} b_{1}^{em} + a_{2}^{l} b_{0}^{s} b_{1}^{em} } \right) \\ & \;\; + c_{2} \left( {a_{0}^{s} b_{0}^{l} b_{3}^{em} + a_{1}^{s} b_{0}^{l} b_{2}^{em} + a_{0}^{s} b_{1}^{l} b_{2}^{em} + a_{1}^{s} b_{1}^{l} b_{1}^{em} + a_{2}^{s} b_{0}^{l} b_{1}^{em} } \right) \\ & \;\; + c_{3} \left( {b_{1}^{s} b_{0}^{l} a_{2}^{em} + b_{0}^{s} b_{1}^{l} a_{2}^{em} + b_{0}^{s} b_{0}^{l} a_{3}^{em} + b_{1}^{s} b_{1}^{l} a_{1}^{em} } \right) \\ \end{aligned}$$
$$\begin{aligned} p_{4}^{HyC} = & \;\;c_{1} \left( {a_{0}^{l} b_{0}^{s} b_{4}^{em} + a_{1}^{l} b_{0}^{s} b_{3}^{em} + a_{0}^{l} b_{1}^{s} b_{3}^{em} + a_{1}^{l} b_{1}^{s} b_{2}^{em} + a_{2}^{l} b_{0}^{s} b_{2}^{em} + a_{2}^{l} b_{1}^{s} b_{1}^{em} } \right) \\ & \;\; + c_{2} \left( {a_{0}^{s} b_{0}^{l} b_{4}^{em} + a_{1}^{s} b_{0}^{l} b_{3}^{em} + a_{0}^{s} b_{1}^{l} b_{3}^{em} + a_{1}^{s} b_{1}^{l} b_{2}^{em} + a_{2}^{s} b_{0}^{l} b_{2}^{em} + a_{2}^{s} b_{1}^{l} b_{1}^{em} } \right) \\ & \;\; + c_{3} \left( {b_{0}^{s} b_{0}^{l} a_{4}^{em} + b_{1}^{s} b_{0}^{l} a_{3}^{em} + b_{0}^{s} b_{1}^{l} a_{3}^{em} + b_{1}^{s} b_{1}^{l} a_{2}^{em} } \right) \\ \end{aligned}$$
$$\begin{aligned} p_{5}^{HyC} = & \;\;c_{1} \left( {a_{1}^{l} b_{0}^{s} b_{4}^{em} + a_{0}^{l} b_{1}^{s} b_{4}^{em} + a_{1}^{l} b_{1}^{s} b_{3}^{em} + a_{2}^{l} b_{0}^{s} b_{3}^{em} + a_{2}^{l} b_{1}^{s} b_{2}^{em} } \right) \\ & \;\; + c_{2} \left( {a_{1}^{s} b_{0}^{l} b_{4}^{em} + a_{0}^{s} b_{1}^{l} b_{4}^{em} + a_{1}^{s} b_{1}^{l} b_{3}^{em} + a_{2}^{s} b_{0}^{l} b_{3}^{em} + a_{2}^{s} b_{1}^{l} b_{2}^{em} } \right) \\ & \;\; + c_{3} \left( {b_{0}^{s} b_{0}^{l} a_{5}^{em} + b_{1}^{s} b_{0}^{l} a_{4}^{em} + b_{0}^{s} b_{1}^{l} a_{4}^{em} + b_{1}^{s} b_{1}^{l} a_{3}^{em} } \right) \\ \end{aligned}$$
$$\begin{aligned} p_{6}^{HyC} = & \;\;c_{1} \left( {a_{1}^{l} b_{1}^{s} b_{4}^{em} + a_{2}^{l} b_{0}^{s} b_{4}^{em} + a_{2}^{l} b_{1}^{s} b_{3}^{em} } \right) \\ & \;\; + c_{2} \left( {a_{1}^{s} b_{1}^{l} b_{4}^{em} + a_{2}^{s} b_{0}^{l} b_{4}^{em} + a_{2}^{s} b_{1}^{l} b_{3}^{em} } \right) \\ & \;\; + c_{3} \left( {b_{1}^{s} b_{0}^{l} a_{5}^{em} + b_{0}^{s} b_{1}^{l} a_{5}^{em} + b_{1}^{s} b_{1}^{l} a_{4}^{em} } \right) \\ \end{aligned}$$
$$p_{7}^{HyC} = c_{1} a_{2}^{l} b_{1}^{s} b_{4}^{em} + c_{2} a_{2}^{s} b_{1}^{l} b_{4}^{em} + c_{3} b_{1}^{s} b_{1}^{l} a_{5}^{em}$$
$$q_{0}^{HyC} = b_{0}^{l} b_{0}^{s} b_{0}^{em}$$
$$q_{1}^{HyC} = b_{0}^{l} b_{0}^{s} b_{1}^{em} + b_{0}^{l} b_{1}^{s} b_{0}^{em} + b_{1}^{l} b_{0}^{s} b_{0}^{em}$$
$$q_{2}^{HyC} = b_{0}^{l} b_{0}^{s} b_{2}^{em} + b_{0}^{l} b_{1}^{s} b_{1}^{em} + b_{1}^{l} b_{0}^{s} b_{1}^{em} + b_{1}^{l} b_{1}^{s} b_{0}^{em}$$
$$q_{3}^{HyC} = b_{0}^{l} b_{0}^{s} b_{3}^{em} + b_{0}^{l} b_{1}^{s} b_{2}^{em} + b_{1}^{l} b_{0}^{s} b_{2}^{em} + b_{1}^{l} b_{1}^{s} b_{1}^{em}$$
$$q_{4}^{HyC} = b_{0}^{l} b_{0}^{s} b_{4}^{em} + b_{0}^{l} b_{1}^{s} b_{3}^{em} + b_{1}^{l} b_{0}^{s} b_{3}^{em} + b_{1}^{l} b_{1}^{s} b_{2}^{em}$$
$$q_{5}^{HyC} = b_{0}^{l} b_{1}^{s} b_{4}^{em} + b_{1}^{l} b_{0}^{s} b_{4}^{em} + b_{1}^{l} b_{1}^{s} b_{3}^{em}$$
$$q_{6}^{HyC} = b_{1}^{l} b_{1}^{s} b_{4}^{em}$$

Appendix 3

$$E_{{eq}}^{{WFC^{\prime }}} \left( \omega \right) = \frac{{\left( {p_{0} - p_{2} \omega ^{2} + p_{4} \omega ^{4} } \right)\left( {q_{0} - q_{2} \omega ^{2} } \right) - \left( {p_{1} \omega - p_{3} \omega ^{3} } \right)\left( {q_{1} \omega - q_{3} \omega ^{3} } \right)}}{{\left( {q_{0} - q_{2} \omega ^{2} } \right)^{2} + \left( {q_{1} \omega - q_{3} \omega ^{3} } \right)^{2} }}$$
(42)
$$E_{{eq}}^{{WFC^{\prime\prime}}} \left( \omega \right) = \frac{{\left( {p_{1} \omega - p_{3} \omega ^{3} } \right)\left( {q_{0} - q_{2} \omega ^{2} } \right) - \left( {p_{0} - p_{2} \omega ^{2} + p_{4} \omega ^{4} } \right)\left( {q_{1} \omega - q_{3} \omega ^{3} } \right)}}{{\left( {q_{0} - q_{2} \omega ^{2} } \right)^{2} + \left( {q_{1} \omega - q_{3} \omega ^{3} } \right)^{2} }}$$
(43)
$$\eta _{{eq}}^{{WFC}} = \frac{{E_{{eq}}^{{WFC^{\prime\prime }}} \left( \omega \right)}}{{E_{{eq}}^{{WFC^{\prime }}} \left( \omega \right)}}$$
(44)
$$E_{{eq}}^{{HyC^{\prime }}} \left( \omega \right) = \frac{{\left( {p_{0} - p_{2} \omega ^{2} + p_{4} \omega ^{4} - p_{6} \omega ^{6} } \right)\left( {q_{0} - q_{2} \omega ^{2} + q_{4} \omega ^{4} - q_{6} \omega ^{6} } \right) + \left( {p_{1} \omega - p_{3} \omega ^{3} + p_{5} \omega ^{5} - p_{7} \omega ^{7} } \right)\left( {q_{1} \omega - q_{3} \omega ^{3} + q_{5} \omega ^{5} } \right)}}{{\left( {q_{0} - q_{2} \omega ^{2} + q_{4} \omega ^{4} - q_{6} \omega ^{6} } \right)^{2} + \left( {q_{1} \omega - q_{3} \omega ^{3} + q_{5} \omega ^{5} } \right)^{2} }}$$
(45)
$$E_{{eq}}^{{HyC^{\prime\prime }}} \left( \omega \right) = \frac{{\left( {p_{1} \omega - p_{3} \omega ^{3} + p_{5} \omega ^{5} - p_{7} \omega ^{7} } \right)\left( {q_{0} - q_{2} \omega ^{2} + q_{4} \omega ^{4} - q_{6} \omega ^{6} } \right) - \left( {p_{0} - p_{2} \omega ^{2} + p_{4} \omega ^{4} - p_{6} \omega ^{6} } \right)\left( {q_{1} \omega - q_{3} \omega ^{3} + q_{5} \omega ^{5} } \right)}}{{\left( {q_{0} - q_{2} \omega ^{2} + q_{4} \omega ^{4} - q_{6} \omega ^{6} } \right)^{2} + \left( {q_{1} \omega - q_{3} \omega ^{3} + q_{5} \omega ^{5} } \right)^{2} }}$$
(46)
$$\eta _{{eq}}^{{HyC}} = \frac{{E_{{eq}}^{{HyC^{\prime\prime }}} \left( \omega \right)}}{{E_{{eq}}^{{HyC^{\prime }}} \left( \omega \right)}}$$
(47)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, K., Roy, H. & Bhattacharjee, A. Establishment and simplification of micromechanical material model for viscoelastic woven fabric/hybrid composite. Arch Appl Mech 94, 449–468 (2024). https://doi.org/10.1007/s00419-023-02528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02528-8

Keywords

Navigation