Skip to main content
Log in

Double Dielectric Relaxation of Oil Nanofluids with Graphite and Carbon Nanotubes

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Nanofluids generated by the addition of various fractions of multi-walled carbon nanotubes (MWCNTs) and 0.5 wt% of graphite (Gt) in commercial engine oil have been electrically studied at frequencies ranging from 100 Hz to 1 MHz and temperatures from 300 to 400 K. The analysis of the electrical resistivity of the prepared nanofluids has shown a percolation threshold of 0.6 wt% and revealed a positive temperature coefficient in resistance (PTCR) and negative temperature coefficient in resistance (NTCR) effects, in temperature ranges below and above the critical temperature point, Tc≈350 K, respectively. The electric modulus has shown two dielectric relaxations for the nanofluids containing MWCNTs, the first one at low frequency related to the interfacial polarization known as MWS-relaxation, while the second one appearing at high frequency is attributed to the interaction between MWCNTs and dipolar molecules of additives. The data of real and imaginary parts of the complex electric modulus were fitted using the Havriliak-Negami model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.A. Angayarkanni, J. Philip, Adv. Colloid Interface Sci. 225, 146 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. M. Kole, T.K. Dey, J. Appl. Phys. 113, 084307 (2013)

    Article  ADS  Google Scholar 

  3. D.-E.A. Mansour, E.G. Atiya, R.M. Khattab, A.M. Azmy, Effect of titania nanoparticles on the dielectric properties of transformer oil-based nanofluids, in: 2012 annual report conference on electrical insulation and dielectric phenomena. IEEE, Montreal, QC, Canada 2012, 295–298 (2012). https://doi.org/10.1109/CEIDP.2012.6378779

    Article  Google Scholar 

  4. M.H. Esfe, M. Rejvani, R. Karimpour, A.A. Abbasian Arani, J. Therm. Anal. Calorim. 128, 1359 (2017)

  5. M. Dong, J. Dai, Y. Li, J. Xie, M. Ren, AIP Adv. 7, 025307 (2017)

    Article  ADS  Google Scholar 

  6. R. Arshad, S. Mehmood, M. Shah, M. Imran, F. Qayyum, Adv. Sci. Technol. Res. J. 13, 162 (2019)

    Article  Google Scholar 

  7. L. Liu, Z. Fang, A. Gu, Z. Guo, Tribol. Lett. 42, 59 (2011)

    Article  CAS  Google Scholar 

  8. Y. Peng, Y. Hu, H. Wang, Tribol. Lett. 25, 247 (2007)

    Article  CAS  Google Scholar 

  9. Y.Y. Wu, W.C. Tsui, T.C. Liu, Wear 262, 819 (2007)

    Article  CAS  Google Scholar 

  10. Y. Hwang, C. Lee, Y. Choi, S. Cheong, D. Kim, K. Lee, J. Lee, S.H. Kim, J. Mech. Sci. Technol. 25, 2853 (2011)

    Article  Google Scholar 

  11. X. Ji, Y. Chen, G. Zhao, X. Wang, W. Liu, Tribol. Lett. 41, 113 (2011)

    Article  CAS  Google Scholar 

  12. L. Chen, H. Xie, W. Yu, Y. Li, Rheological behaviors of nanofluids containing multi-walled carbon nanotube. J. Dispers. Sci. Technol. 32, 550 (2011)

    Article  CAS  Google Scholar 

  13. S. Ma, S. Zheng, D. Cao, H. Guo, Particuology 8, 468 (2010)

    Article  CAS  Google Scholar 

  14. Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park, J.K. Lee, Curr. Appl. Phys. 6, 1068 (2006)

    Article  ADS  Google Scholar 

  15. P.J.F. Harris, Carbon nanotubes and related structures: new materials for the 21st century Cambridge University Press, Cambridge, UK (1999)

  16. M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Phys. Rev. Lett. 84, 5552 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  17. H. Xie, W. Yu, Y. Li, L. Chen, Nanoscale Res. Lett. 6, 124 (2011)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  18. Y. Choi, C. Lee, Y. Hwang, M. Park, J. Lee, C. Choi, M. Jung, Curr. Appl. Phys. 9, e124 (2009)

    Article  ADS  Google Scholar 

  19. N.S. Suhaimi, M.F.M. Din, M.T. Ishak, A.R.A. Rahman, J. Wang, M.Z. Hassan, Alex. Eng. J. 61, 9623 (2022)

    Article  Google Scholar 

  20. F. Negri, Fundamental study and modeling of nanofluids. PhD Thesis, University of Bologna, Italy (2017)

  21. T.P. Iglesias, G. Vilao, J.C.R. Reis, J. Appl. Phys. 122, 074102 (2017)

    Article  ADS  Google Scholar 

  22. S. Tagmouti, S. Bouzit, L.C. Costa, M.P.F. Graça, A. Outzourhit, Spectrosc. Lett. 48, 761 (2015)

    Article  CAS  ADS  Google Scholar 

  23. Safety data sheet Helix HX5 15W-40, version 1.10. Print date 20 February 2020

  24. https://www.opieoils.co.uk/t-engine-oil-additives-packages-explained.aspx. (Accessed 7 Jul 2020)

  25. S. Barnoss, M.G. Melo, M. El Hasnaoui, M.P.F. Graça, M.E. Achour, L.C. Costa, J. Reinf. Plast. Compos. (2020). https://doi.org/10.1177/0731684420951856

    Article  Google Scholar 

  26. R. Belhimria, Z. Samir, S. Boukheir, S. Soreto Teixeira, M.E. Achour, A. Anson Casaos, J.M. Gonzalez-Dominguez, L.C. Costa, M. El Hasnaoui, J. Compos. Mater. 55, 3741 (2021)

  27. S. El Bouazzaoui, A. Droussi, M.E. Achour, C. Brosseau, J. Appl. Phys. 106, 104107 (2009)

    Article  ADS  Google Scholar 

  28. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973)

    Article  ADS  Google Scholar 

  29. K. Abazine, H. Anakiou, M. El Hasnaoui, M.P.F. Graça, M.A. Fonseca, L.C. Costa, M.E. Achour, A. Oueriagli, J. Compos. Mater. 50, 3283 (2016)

    Article  CAS  ADS  Google Scholar 

  30. E. Logakis, Ch. Pandis, P. Pissis, J. Pionteck, P. Pötschke, Compos. Sci. Technol. 71, 854 (2011)

    Article  CAS  Google Scholar 

  31. Y.J. Kim, T.S. Shin, H.D. Choi, J.H. Kwon, Y.-C. Chung, H.G. Yoon, Carbon 43, 23 (2005)

    Article  Google Scholar 

  32. J.Z. Kovacs, B.S. Velagala, K. Schulte, W. Bauhofer, Compos. Sci. Technol. 67, 922 (2007)

    Article  CAS  Google Scholar 

  33. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Compos. Part Appl. Sci. Manuf. 41, 1345 (2010)

    Article  Google Scholar 

  34. C. Grimaldi, I. Balberg, Phys. Rev. Lett. 96, 066602 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  35. D.M. Chapman eds, Introduction to percolation theory. Taylor Francis. Dietrich Stauffer, Ammon Aharony (1992)

  36. B. Huybrechts, K. Ishizaki, M. Takata, J. Mater. Sci. 30, 2463 (1995)

    Article  CAS  ADS  Google Scholar 

  37. M. El Hasnaoui, M.E. Achour, L.C. Costa, in Nanoscience and nanotechnology in security and protection against CBRN threats, ed. by P. Petkov et al. (Springer Netherlands, Dordrecht, 2020) pp. 291–302

  38. M. El Hasnaoui, M.P.F. Graça, M.E. Achour, L.C. Costa, F. Lahjomri, A. Outzourhit, A. Oueriagli, J. Mater. Env. Sci. 2, 1 (2011)

    CAS  Google Scholar 

  39. Z. El Ansary, I. Bouknaitir, S.S. Teixeira, L. Kreit, A. Panniello, P. Fini. M. Striccoli, M. El Hasnaoui, L.C. Costa, M.E. Achour, in Nanoscience and nanotechnology in security and protection against CBRN threats, ed. by P. Petkov et al. (Springer Netherlands, Dordrecht, 2020) pp. 235–250

  40. M. El Hasnaoui, A. Triki, M.P.F. Graça, M.E. Achour, L.C. Costa, M. Arous, J. Non-Cryst, Solids 358, 2810 (2012)

    CAS  Google Scholar 

  41. M. El Hasnaoui, A. Triki, M.E. Achour, M. Arous, Phys. B Condens. Matter 433, 62 (2014)

    Article  CAS  ADS  Google Scholar 

  42. G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos. Part Appl. Sci. Manuf. 33, 375 (2002)

    Article  Google Scholar 

  43. S. Ghosh, Solid State Ion. 149, 67 (2002)

    Article  CAS  ADS  Google Scholar 

  44. R. Kohlrausch, Ann. Phys. Chem. 167, 179 (1854)

    Article  ADS  Google Scholar 

  45. S. Havriliak, S. Negami, J. Polym. Sci. Part C Polym. Symp. 14, 99 (1966)

    Article  Google Scholar 

  46. H. Lu, X. Zhang, H. Zhang, J. Appl. Phys. 100, 054104 (2006)

    Article  ADS  Google Scholar 

  47. Y.-W. Lai, W.-C. Wei, Materials 9, 863 (2016)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  48. S. Singh, R. Pandey, S. Presto, M.P. Carpanese, A. Barbucci, M. Viviani, P. Singh, Energies 12, 4042 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Melo BMG acknowledges Fundação para a Ciência e Tecnologia (FCT) for the PhD grant (SFRH/BD/AA7487/2016) and Barnoss S thanks Dr. Barnoss Said from RWTH Aachen University in Germany for supplying the MWCNTs. The authors also thank FEDER funds through the Compete 2020 Program and National Funds through FCT-Portuguese Foundation for Science and Technology under the project UIDB/50025/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Hasnaoui.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnoss, S., Melo, B.M.G., El Hasnaoui, M. et al. Double Dielectric Relaxation of Oil Nanofluids with Graphite and Carbon Nanotubes. Braz J Phys 54, 43 (2024). https://doi.org/10.1007/s13538-024-01426-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01426-w

Keywords

Navigation