Skip to main content
Log in

Stabilization and variations to the adaptive local iterative filtering algorithm: the fast resampled iterative filtering method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Non-stationary signals are ubiquitous in real life. Many techniques have been proposed in the last decades which allow decomposing multi-component signals into simple oscillatory mono-components, like the groundbreaking Empirical Mode Decomposition technique and the Iterative Filtering method. When a signal contains mono-components that have rapid varying instantaneous frequencies like chirps or whistles, it becomes particularly hard for most techniques to properly factor out these components. The Adaptive Local Iterative Filtering technique has recently gained interest in many applied fields of research for being able to deal with non-stationary signals presenting amplitude and frequency modulation. In this work, we address the open question of how to guarantee a priori convergence of this technique, and propose two new algorithms. The first method, called Stable Adaptive Local Iterative Filtering, is a stabilized version of the Adaptive Local Iterative Filtering that we prove to be always convergent. The stability, however, comes at the cost of higher complexity in the calculations. The second technique, called Resampled Iterative Filtering, is a new generalization of the Iterative Filtering method. We prove that Resampled Iterative Filtering is guaranteed to converge a priori for any kind of signal. Furthermore, we show that in the discrete setting its calculations can be drastically accelerated by leveraging on the mathematical properties of the matrices involved. Finally, we present some artificial and real-life examples to show the power and performance of the proposed methods.Kindly check and confirm that the Article note is correctly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://www.cicone.com.

References

  1. Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS-Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Springer, Berlin (2007)

    Google Scholar 

  2. Li, B.N., Dong, M.C., Vai, M.I.: On an automatic delineator for arterial blood pressure waveforms. Biomed. Signal Process. Control 5(1), 76–81 (2010)

    Article  Google Scholar 

  3. Camporeale, E., Sorriso-Valvo, L., Califano, F., Retinò, A.: Coherent structures and spectral energy transfer in turbulent plasma: a space-filter approach. Phys. Rev. Lett. 120(12), 125101 (2018)

    Article  Google Scholar 

  4. Wood, A.G., Alfonsi, L., Clausen, L.B., Jin, Y., Spogli, L., Urbář, J., Rawlings, J.T., Whittaker, I.C., Dorrian, G.D., Høeg, P., et al.: Variability of ionospheric plasma: results from the ESA swarm mission. Space Sci. Rev. 218(6), 52 (2022)

    Article  Google Scholar 

  5. De Santis, A., Marchetti, D., Pavón-Carrasco, F.J., Cianchini, G., Perrone, L., Abbattista, C., Alfonsi, L., Amoruso, L., Campuzano, S.A., Carbone, M., et al.: Precursory worldwide signatures of earthquake occurrences on swarm satellite data. Sci. Rep. 9(1), 20287 (2019)

    Article  Google Scholar 

  6. Nuttall, L.: Characterizing transient noise in the LIGO detectors. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 376(2120), 20170286 (2018)

    Article  Google Scholar 

  7. Flandrin, P.: Time-Frequency/Time-Scale Analysis. Academic Press, Cambridge (1998)

    Google Scholar 

  8. Lin, L., Wang, Y., Zhou, H.: Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv. Adapt. Data Anal. 1(04), 543–560 (2009)

    Article  MathSciNet  Google Scholar 

  9. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc Lond. Ser. A: Math., Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  10. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009)

    Article  Google Scholar 

  11. Yeh, J.-R., Shieh, J.-S., Huang, N.E.: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2(02), 135–156 (2010)

    Article  MathSciNet  Google Scholar 

  12. Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P.: A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4144–4147. IEEE (2011)

  13. Zheng, J., Cheng, J., Yang, Y.: Partly ensemble empirical mode decomposition: an improved noise-assisted method for eliminating mode mixing. Signal Process. 96, 362–374 (2014)

    Article  Google Scholar 

  14. Huang, C., Yang, L., Wang, Y.: Convergence of a convolution-filtering-based algorithm for empirical mode decomposition. Adv. Adapt. Data Anal. 1(04), 561–571 (2009)

    Article  MathSciNet  Google Scholar 

  15. Ur Rehman, N., Mandic, D.P.: Filter bank property of multivariate empirical mode decomposition. IEEE Trans. Signal Process. 59(5), 2421–2426 (2011)

    Article  MathSciNet  Google Scholar 

  16. Huang, N.E.: Introduction to the Hilbert–Huang transform and its related mathematical problems. Hilbert–Huang Transf Appl 1–26 (2014)

  17. Cicone, A., Li, W.S., Zhou, H.: New theoretical insights in the decomposition and time-frequency representation of nonstationary signals: the imfogram algorithm. Preprint (2021)

  18. Cicone, A.: Iterative filtering as a direct method for the decomposition of nonstationary signals. Numer. Algorithms 1–17 (2020)

  19. Cicone, A., Liu, J., Zhou, H.: Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl. Comput. Harmon. Anal. 41(2), 384–411 (2016)

    Article  MathSciNet  Google Scholar 

  20. Cicone, A., Zhou, H.: Numerical analysis for iterative filtering with new efficient implementations based on FFT. Numer. Math. 147(1), 1–28 (2021)

    Article  MathSciNet  Google Scholar 

  21. An, X.: Local rub-impact fault diagnosis of a rotor system based on adaptive local iterative filtering. Trans. Inst. Meas. Control. 39(5), 748–753 (2017)

    Article  Google Scholar 

  22. An, X., Li, C., Zhang, F.: Application of adaptive local iterative filtering and approximate entropy to vibration signal denoising of hydropower unit. J. Vibroeng. 18(7), 4299–4311 (2016)

    Article  Google Scholar 

  23. An, X., Pan, L.: Wind turbine bearing fault diagnosis based on adaptive local iterative filtering and approximate entropy. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231(17), 3228–3237 (2017)

    Article  Google Scholar 

  24. An, X., Yang, W., An, X.: Vibration signal analysis of a hydropower unit based on adaptive local iterative filtering. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231(7), 1339–1353 (2017)

    Article  Google Scholar 

  25. An, X., Zeng, H., Li, C.: Demodulation analysis based on adaptive local iterative filtering for bearing fault diagnosis. Measurement 94, 554–560 (2016)

    Article  Google Scholar 

  26. Kim, S.J., Zhou, H.: A multiscale computation for highly oscillatory dynamical systems using empirical mode decomposition (EMD)-type methods. Multiscale Model. Simul. 14(1), 534–557 (2016)

    Article  MathSciNet  Google Scholar 

  27. Li, Y., Wang, X., Liu, Z., Liang, X., Si, S.: The entropy algorithm and its variants in the fault diagnosis of rotating machinery: a review. IEEE Access 6, 66723–66741 (2018)

    Article  Google Scholar 

  28. Mitiche, I., Morison, G., Nesbitt, A., Hughes-Narborough, M., Stewart, B.G., Boreham, P.: Classification of partial discharge signals by combining adaptive local iterative filtering and entropy features. Sensors 18(2), 406 (2018)

    Article  Google Scholar 

  29. Piersanti, M., Materassi, M., Cicone, A., Spogli, L., Zhou, H., Ezquer, R.G.: Adaptive local iterative filtering: a promising technique for the analysis of nonstationary signals. J. Geophys. Res. Space Phys. 123(1), 1031–1046 (2018)

    Article  Google Scholar 

  30. Sharma, R., Pachori, R.B., Upadhyay, A.: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput. Appl. 28(10), 2959–2978 (2017)

    Article  Google Scholar 

  31. Yang, D., Wang, B., Cai, G., Wen, J.: Oscillation mode analysis for power grids using adaptive local iterative filter decomposition. Int. J. Electr. Power Energy Syst. 92, 25–33 (2017)

    Article  Google Scholar 

  32. Cicone, A., Garoni, C., Serra-Capizzano, S.: Spectral and convergence analysis of the discrete ALIF method. Linear Algebra Appl. 580, 62–95 (2019)

    Article  MathSciNet  Google Scholar 

  33. Cicone, A., Wu, H.-T.: Convergence analysis of adaptive locally iterative filtering and sift method. arXiv:2005.04578 (2021)

  34. Barbarino, G., Cicone, A.: Conjectures on spectral properties of ALIF algorithm. Linear Algebra Appl. 647, 127–152 (2022)

    Article  MathSciNet  Google Scholar 

  35. Cicone, A., Dell’Acqua, P.: Study of boundary conditions in the iterative filtering method for the decomposition of nonstationary signals. J. Comput. Appl. Math. 373, 112248 (2020)

    Article  MathSciNet  Google Scholar 

  36. Stallone, A., Cicone, A., Materassi, M.: New insights and best practices for the successful use of empirical mode decomposition, iterative filtering and derived algorithms. Sci. Rep. 10, 15161 (2020)

    Article  Google Scholar 

  37. Wu, H.-T.: Current state of nonlinear-type time-frequency analysis and applications to high-frequency biomedical signals. Curr. Opin. Syst. Biol. 23, 8–21 (2020)

    Article  Google Scholar 

  38. Barbe, P., Cicone, A., Suet Li, W., Zhou, H.: Time-frequency representation of nonstationary signals: the imfogram. Pure Appl. Funct. Anal. 7(1), 27–39 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are members of the Italian “Gruppo Nazionale di Calcolo Scientifico” (GNCS) of the Istituto Nazionale di Alta Matematica “Francesco Severi” (INdAM).

Funding

AC thanks the Italian Ministry of the University and Research for the financial support under the PRIN PNRR 2022 grant number E53D23018040001 ERC field PE1 project P2022XME5P titled “Circular Economy from the Mathematics for Signal Processing prospective”, and the Ministry of Foreign Affairs and the International Cooperation for the financial support under the “Grande Rilevanza” Italy—China Science and Technology Cooperation Joint Project titled “sCHans—Solar loading infrared thermography and deep learning teCHniques for the noninvAsive iNSpection of precious artifacts”. GB is supported by the Alfred Kordelinin säätiö grant no. 210122 and partly by an Academy of Finland grant (Suomen Akatemian Päätös 331240). GB is also supported by the European Union (ERC consolidator grant, eLinoR, no 101085607).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work in equal parts. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Giovanni Barbarino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Error estimation for non-stationary components

A Error estimation for non-stationary components

Here we report the proof for Theorem 17. First, let us show a more general result.

Proposition 19

Suppose \(\alpha :{\mathbb {R}}\rightarrow {\mathbb {R}}\) is a \(C^1\) function with \(\alpha '(x)\in [a,b]\) where \(a<b\) and \(ab\ge 0\). Call \(R:=b-a\) and suppose that \(\alpha (1) = \alpha (0) + 2k\pi \) for some integer k. If now \(d_j\) is the j-th Fourier coefficient of \(e^{\textrm{i} \alpha (x)}\) as in

$$\begin{aligned} d_j:= \int _0^1 e^{\textrm{i} \alpha (x)} e^{-\textrm{i} 2\pi jx} dx, \end{aligned}$$

and if \(2\pi j>b\), then

$$\begin{aligned} |d_j|\le \frac{1}{\pi }\frac{R}{2\pi j -b}. \end{aligned}$$

Proof

From the relation \(\alpha (1) = \alpha (0) + 2k\pi \) we find that \(2k\pi = \alpha (1) -\alpha (0) =\int _0^1 \alpha '(x) \in [a,b]\). Call \(\psi (x):= 2\pi jx - \alpha (x)\) and notice that

$$\begin{aligned} \psi '(x) = 2\pi j - \alpha '(x) \in [q,p], \quad p:= 2\pi j -a\ge q:= 2\pi j-b>0, \end{aligned}$$

so \(\psi \) is invertible with \(\psi ^{-1}\) in \(C^1\). We can then define the function \(\varphi (y)\) as \(\varphi (y):= (\psi ^{-1})'(y) = 1/\psi '(\psi ^{-1}(y) )\in [p^{-1},q^{-1}]\), and by the Fourier formula,

$$\begin{aligned} d_j= \int _0^1 e^{\textrm{i} [\alpha (x)- 2\pi jx]} dx = \int _0^1 e^{-\textrm{i} \psi (x)} dx = \int _{\psi (0)}^{\psi (1)} e^{-\textrm{i} y}\varphi (y) dy, \end{aligned}$$

where \(\psi (1) - \psi (0) = 2\pi j - (\alpha (1)-\alpha (0)) = 2\pi j -2\pi k\). Call \(s:= j-k\) and notice that \(2\pi s = \int _0^1\psi '(x)\in [q,p]\) and in particular \(p\ge 2\pi s\ge q>0\). Now

$$\begin{aligned} |d_j|= \left|\int _{-\alpha (0)}^{2\pi j-\alpha (1)} e^{-\textrm{i} y} \varphi (y) dy\right|&= \left|\int _{0}^{2\pi } e^{-\textrm{i} sz} e^{\textrm{i} \alpha (0)}\varphi (sz-\alpha (0))s dz\right|\\&= s \left|\int _{0}^{2\pi } e^{-\textrm{i} sz}\varphi (sz-\alpha (0)) dz\right|\end{aligned}$$

and the integral of the exponential is zero over \([0,2\pi ]\), therefore we can add to \(\varphi (y)\) any constant without changing the result. As a consequence,

$$\begin{aligned} |d_j|=s \left|\int _{0}^{2\pi } e^{-\textrm{i} sz} \left( \varphi (sz-\alpha (0)) -\frac{q^{-1}+p^{-1}}{2}\right) dz\right|= s \left|\int _{0}^{2\pi } e^{-\textrm{i} sz} \phi (z) dz\right|\end{aligned}$$

where \(\phi (z):= \varphi (sz-\alpha (0))-\frac{q^{-1}+p^{-1}}{2}\) is a real function bounded in absolute value by \(\frac{q^{-1}-p^{-1}}{2}\). Suppose \(z_0\) is the argument of \(\int _0^{2\pi } e^{-\textrm{i} sz}\phi (z) dz\) so that

$$\begin{aligned} |d_j|=s e^{-\textrm{i} z_0} \int _{0}^{2\pi } e^{-\textrm{i} sz}\phi (z) dz \in {\mathbb {R}} \end{aligned}$$

and its imaginary part is zero, leading to

$$\begin{aligned} |d_j|&=s \Re \left( e^{-\textrm{i} z_0} \int _{0}^{2\pi } e^{-\textrm{i} sz}\phi (z) dz \right) \\&=s \int _{0}^{2\pi } \cos (sz+z_0)\phi (z) dz \\&\le s \frac{q^{-1}-p^{-1}}{2} \int _{0}^{2\pi } |\cos (sz+z_0)|dz = 2s (q^{-1}-p^{-1}). \end{aligned}$$

Using that \(p\ge 2\pi s\) and \(p-q = R\) we conclude that

$$\begin{aligned} |d_j|\le \frac{R}{q\pi }. \end{aligned}$$

\(\square \)

Corollary 20

Suppose \(\alpha :{\mathbb {R}}\rightarrow {\mathbb {R}}\) is a \(C^1\) function with \(\alpha '(x)\in [a,b]\) where \(0<a<b\). Call \(R:=b-a\) and suppose that \(\alpha (1) = \alpha (0) + 2k\pi \) for some integer k. If now \(d_j\) is the j-th Fourier coefficient of \(\cos (\alpha (x))\) as in

$$\begin{aligned} d_j:= \int _0^1 \cos (\alpha (x)) e^{-\textrm{i} 2\pi jx} dx, \end{aligned}$$

and \(2\pi j - b>0\), then

$$\begin{aligned} |d_j|\le \frac{1}{\pi }\frac{R}{2\pi j - b}. \end{aligned}$$

Proof

Since \(2\cos (\alpha (x)) = e^{\textrm{i} \alpha (x)}+e^{-\textrm{i} \alpha (x)}\) and both \(\alpha (x)\) and \(-\alpha (x)\) satisfy the hypotheses of Proposition 19, we can estimate \(d_j\) through the mean of the Fourier coefficients \(d_{j,1}\) and \(d_{j,2}\) respectively of \(e^{\textrm{i} \alpha (x)}\) and \(e^{-\textrm{i} \alpha (x)}\)

$$\begin{aligned} |d_j|\le \frac{|d_{j,1}|+ |d_{j,2}|}{2}\le \frac{1}{2\pi }\left( \frac{R}{2\pi j -b} +\frac{R}{2\pi j + b}\right) \le \frac{1}{\pi }\frac{R}{2\pi j - b}. \end{aligned}$$

\(\square \)

Going back to Theorem 17, notice that f(x) is a \(C^1\) periodic function with continuous derivative \(f'(x)\) whose Fourier coefficients are \(2\pi \textrm{i}nd_n\) and \(|f'(x)|= |\beta '(x)\sin (\beta (x))|\le b\). By Parseval Identity,

$$\begin{aligned} \Vert f'(x)\Vert _2^2 = \sum _{n=-\infty }^{+\infty } (2\pi n)^2 |d_n|^2 =\int _0^1 f'(x)^2 dx \le b^2. \end{aligned}$$

The series of \(n^2|d_n|^2\) thus converges, and

$$\begin{aligned} \Vert f-f_N\Vert _2^2 =\sum _{|n|>N} |d_n|^2 =\sum _{|n|>N} \frac{(2\pi n)^2 |d_n|^2}{(2\pi n)^2} \le \left( \frac{b}{2\pi (N+1)}\right) ^2 = \left( \frac{b}{G+b+2\pi }\right) ^2. \end{aligned}$$

From Corollary 20, we already have a bound on \(d_j\) leading to

$$\begin{aligned} \Vert f-f_N\Vert _2^2= & {} \sum _{|n|>N} |d_n|^2\le \frac{R^2}{\pi ^2} \sum _{|n|>N} \frac{1}{(2\pi n - b)^2}\\\le & {} \frac{R^2}{\pi ^2} \int _N^{\infty } \frac{1}{(2\pi x + b)^2} +\frac{1}{(2\pi x - b)^2}\\= & {} \frac{R^2}{2\pi ^3}\left[ \frac{1}{2\pi N + b} +\frac{1}{2\pi N - b}\right] \le \frac{R^2}{\pi ^3 G}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbarino, G., Cicone, A. Stabilization and variations to the adaptive local iterative filtering algorithm: the fast resampled iterative filtering method. Numer. Math. 156, 395–433 (2024). https://doi.org/10.1007/s00211-024-01394-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-024-01394-y

Mathematics Subject Classification

Navigation