Skip to main content
Log in

Improving linolenic acid content in rapeseed oil by overexpression of CsFAD2 and CsFAD3 genes

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

With the increasing public attention to the health benefit of polyunsaturated fatty acids (PUFAs) and demand for linolenic acid (C18:3), it is of great significance to increase the C18:3 content in our meal. As an oil crop with high content of C18:3, Camelina sativa has three homologous copies of FAD2 and three homologous copies FAD3. In this study, we seed-specifically overexpressed two Camelina sativa fatty acid desaturase genes, CsFAD2 and CsFAD3, in rapeseed cultivar Zhongshuang 9. The results show that C18:3 content in CsFAD2 and CsFAD3 overexpressed seeds is increased from 8.62% in wild-type (WT) to 10.62–12.95% and 14.54–26.16%, respectively. We crossed CsFAD2 and CsFAD3 overexpression lines, and stable homozygous digenic crossed lines were obtained. The C18:3 content was increased from 8.62% in WT to 28.46–53.57% in crossed overexpression lines. In addition, we found that the overexpression of CsFAD2 and CsFAD3 had no effect on rapeseed growth, development, and other agronomic traits. In conclusion, we successfully generated rapeseed germplasms with high C18:3 content by simultaneously overexpressing CsFAD2 and CsFAD3, which provides a feasible way for breeding high C18:3 rapeseed cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the article or its online supporting information.

References

  • Anai T, Koga M, Tanaka H, Kinoshita T, Rahman SM, Takagi Y (2003) Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21:988–992

    Article  CAS  PubMed  Google Scholar 

  • Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355

    Article  ADS  CAS  PubMed  Google Scholar 

  • Barcelo-Coblijn G, Murphy EJ (2009) α-Linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 48:355–374

    Article  CAS  PubMed  Google Scholar 

  • Bates PD, Stymne S, Ohlrogge J (2013) Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol 16:358–364

    Article  CAS  PubMed  Google Scholar 

  • Brenna JT, Salem NJ, Sinclair AJ, Cunnane SC, International Society for the Study of Fatty A, Lipids I (2009) Alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostag Leukotr Ess 80:85–91

    Article  CAS  Google Scholar 

  • Budin JT, Breene WM, Putnam DH (1995) Some compositional properties of Camelina (Camelina sativa L. Crantz) seeds and oils. J Am Oil Chem Soc 72:309–315

    Article  CAS  Google Scholar 

  • Burdge GC, Calder PC (2005) Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581–597

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 6:21625

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505S-1519S

    Article  CAS  PubMed  Google Scholar 

  • Combs R, Bilyeu K (2019) Novel alleles of FAD2-1A induce high levels of oleic acid in soybean oil. Mol Breeding 39:79

    Article  Google Scholar 

  • Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Tian X, Li SJ, Yang B, Yao W, Wang J, Guo L, Lu SP (2020) An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breeding 40:96

    Article  CAS  Google Scholar 

  • Du C, Chen Y, Wang K, Yang Z, Zhao C, Jia Q, Taylor DC, Zhang M (2018) Strong co-suppression impedes an increase in polyunsaturated fatty acids in seeds overexpressing FAD2. J Exp Bot 70(3):985–994

    Article  Google Scholar 

  • Gan L, Sun X, Jin L, Wang G, Xu J, Wei Z, Fu T (2003) Establishment of math models of NIRS analysis for oil and protein contents in seed of Brassica napus. Scientia Agricultura Sinica 36:1609–1613

    CAS  Google Scholar 

  • Ghasemi FS, Wang F, Sinclair AJ, Elliott G, Turchini GM (2019) How does high DHA fish oil affect health? A systematic review of evidence. Crit Rev Food Sci Nutr 59:1684–1727

    Article  Google Scholar 

  • Greco M, Chiappetta A, Bruno L, Bitonti MB (2012) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63:695–709

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Xia H, Li X, Fan R, Li Q, Ouyang Z, Tang S, Lang G (2022) Brassica napus BnaNTT1 modulates ATP homeostasis in plastids to sustain metabolism and growth. Cell Rep 40:111060

    Article  CAS  PubMed  Google Scholar 

  • Hu FB, Stampfer MJ, Manson JE, Rimm EB, Wolk A, Colditz GA, Hennekens CH, Willett WC (1999) Dietary intake of a-linolenic acid and risk of fatal ischemic heart. Am J Clin Nutr 69:890–897

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507

    Article  CAS  PubMed  Google Scholar 

  • Jadhav A, Katavic V, Marillia EF, Michael Giblin E, Barton DL, Kumar A, Conntag C, Babic V, Keller WA, Taylor DC (2005) Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng 7:215–220

    Article  CAS  PubMed  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdren C, Barret P, Burnel D, Delourme R, Renard M (1996a) Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet 93(4):512–518

    Article  CAS  PubMed  Google Scholar 

  • Jourdren C, Barret P, Horvais R, Delourme R, Renard M (1996b) Identification of RAPD markers linked to linolenic acid genes in rapeseed. Euphytica 90(3):351–357

    Article  CAS  Google Scholar 

  • Lee K, In Sohn S, Jung JH, Kim SH, Roh KH, Kim J, Suh MC, Kim HU (2013) Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene 531(2):253–262

    Article  CAS  PubMed  Google Scholar 

  • Li G, Wang X, Yang H, Zhang P, Wu F, Li Y, Zhou Y, Zhang X, Ma H, Zhang W, Li J (2020) Alpha-Linolenic acid but not linolenic acid protects against hypertension: critical role of SIRT3 and autophagic flux. Cell Death Dis 11:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Brid S, Bebono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu CC, Zallot R, Ohlrogge J (2010) Acyl-Lipid Metabolism Arabidopsis Book 8:e0133

    Article  PubMed  Google Scholar 

  • Martins JG (2009) EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28:525–542

    Article  CAS  PubMed  Google Scholar 

  • Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogue F, Faure JD (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan H, Lu S, Fang C, Hou Z, Yang C, Zhang Q, Liu B, Kong F (2020) Molecular breeding of a high oleic acid soybean line by integrating natural variations. Mol Breeding 40:87

    Article  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6(1):147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pham AT, Shannon JG, Bilyeu KD (2012) Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet 125:503–515

    Article  CAS  PubMed  Google Scholar 

  • Puttick D, Dauk M, Lozinsky S, Smith MA (2009) Overexpression of a FAD3 desaturase increases synthesis of a polymethylene-interrupted dienoic fatty acid in seeds of Arabidopsis thaliana L. Lipids 44:753–757

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Rodríguez MF, Sánchez-García A, Salas JJ, Garcés R, Martínez-Force E (2013) Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind Crop Prod 50:673–679

    Article  Google Scholar 

  • Scheffler JA, Sharpe AG, Schmidt H, Sperling P, Parkin IAP, Lühs W, Lydiate DJ, Heinz E (1997) Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet 94(5):583–591

    Article  CAS  Google Scholar 

  • Sung M, Van K, Lee S, Nelson R, LaMantia J, Taliercio E, Mchale LK, Mian MAR (2021) Identification of SNP markers associated with soybean fatty acids contents by genome-wide association analyses. Mol Breeding 41:27

    Article  CAS  Google Scholar 

  • Tang Y, Qiu X, Hu C, Li J, Wu L, Wang W, Li X, Li X, Zhu H, Sui J, Wang J, Qiao L (2022) Breeding of a new variety of peanut with high-oleic-acid content and high-yield by marker-assisted backcrossing. Mol Breeding 42:42

    Article  CAS  Google Scholar 

  • Tomio Narisawa MD, Yoko Fukaura BS, Kazunaga Yazawa PD, Chikako Ishikawa BS, Yosihiro Isoda BS (1994) Colon cancer prevention with colon cancer prevention with a small amount of dietary perilla oil high in alpha-linolenic acid in an animal model. Cancer 15:2069–2075

    Article  Google Scholar 

  • Tulodziecka T, Diaz-Rohrer BB, Farley MM, Chan RB, Paolo GD, Levental KR, Waxham MN, Levental I (2016) Remodeling of the postsynaptic plasma membrane during neural development. Mol Biol Cell 27:3480–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urla R, Pavan Kumar P, Sripadi P, Khareedu VR, Vudem DR (2017) Cloning of fatty acid desaturase-coding sequence (Lufad3) from flax and its functional validation in rice. Plant Biotechnol Rep 11:259–270

    Article  Google Scholar 

  • Venegas-Caleron M, Sayanova O, Napier JA (2010) An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 49:108–119

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau J (2006) n-3 fatty acids from fish or fish-oil supplements, but not a-linolenic acid, benefit cardiovascular disease outcomes in primary – and secondary-prevention studies: a systematic review. Am J Clin Nutr 84:5–17

    Article  CAS  PubMed  Google Scholar 

  • Wells R, Trick M, Soumpourou E, Clissold L, Morgan C, Werner P, Gibbard C, Clarke M, Jennaway R, Bancroft I (2013) The control of seed oil polyunsaturate content in the polyploid crop species Brassica napus. Mol Breeding 33:349–362

    Article  Google Scholar 

  • Williams D, Verghese M, Walker LT, Boateng J, Shackelford L, Chawan CB (2007) Flax seed oil and flax seed meal reduce the formation of aberrant crypt foci (ACF) in azoxymethane-induced colon cancer in Fisher 344 male rats. Food Chem Toxicol 45:153–159

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Zhu YM (2002) The reasons of plant transgene silencing and the countermeasures. Lett in Biotechnol 03:228–231

    Google Scholar 

  • Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125(4):715–729

    Article  CAS  PubMed  Google Scholar 

  • Yeom WW, Kim HJ, Lee KR, Cho HS, Kim JY, Jung HW, Oh SW, Jun SE, Kim HU, Chung YS (2019) Increased production of alpha-linolenic acid in soybean seeds by overexpression of Lesquerella FAD3-1. Front Plant Sci 10:1812

    Article  PubMed  Google Scholar 

  • Zhang X, Lian J, Dai C, Wang X, Zhang M, Su X, Cheng Y, Yu C (2021a) Genetic segregation analysis of unsaturated fatty acids content in the filial generations of high-linolenic-acid rapeseed (Brassica napus). Oil Crop Science 6:169–174

    Article  Google Scholar 

  • Zhang YW, Li DR, Hou JL, Wei SH, Zhang WX, Dong YH, Tian JH, Kong J, Zhao XG (2021b) Analysis of breeding of rapeseed with high linolenic acid content. Acta Agriculturae Boreali-Occidentalis Sinica 30(07):949–962

    CAS  Google Scholar 

  • Zhou Z, Dun X, Xia S, Shi D, Qin M, Yi B, Wen J, Shen J, Ma C, Tu J, Fu T (2012) BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. J Exp Bot 63:2041–2058

    Article  CAS  PubMed  Google Scholar 

  • Zubr J, Matthus B (2002) Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind Crop Prod 15(2):155–162

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Science Fund for Distinguished Young Scholars (32225037), the Fundamental Research Funds for the Central Universities (2662022ZKPY001), the Hubei Hongshan Laboratory (2021HSZD004), the HZAU-AGIS Cooperation Fund (SZYJY2022008), and the Higher Education Discipline Innovation Project (B20051).

Author information

Authors and Affiliations

Authors

Contributions

L.G. and S.T. designed and supervised this study. Y.L., Z.D., and Y.L. performed the experiments. Y.L. and Y.L. analyzed the data. Y.L. wrote the manuscript. L.G., S.T., and S.L. revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Shan Tang or Liang Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1938 KB)

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Du, Z., Li, Y. et al. Improving linolenic acid content in rapeseed oil by overexpression of CsFAD2 and CsFAD3 genes. Mol Breeding 44, 9 (2024). https://doi.org/10.1007/s11032-024-01445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-024-01445-0

Keywords

Navigation