Skip to main content
Log in

First-order quantum corrections of tunneling radiation in modified Schwarzschild–Rindler black hole

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this work, we study the first order corrections of Hawking temperature and entropy for modified Schwarzschild–Rindler black hole. To do so, we use the modified Lagrangian equation for vector particles in the background of quantum correction parameter \(\delta \). We examine the graphical interpretation of the corrected Hawking temperature with respect to horizon under the effects of correction parameter in order to verify the gravitational effects on the geometry of the modified Schwarzschild–Rindler black hole. We perform a graphic analysis of the modified Schwarzschild–Rindler black hole’s physical state as a function of the mass and Rindler acceleration under the effects of correction parameter. Moreover, we derive the corrected entropy and study the effects of mass and Rindler acceleration parameter on entropy under different variations of correction parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Romero, G.E., Vila, G.S.: Introduction to Black Hole Astrophysics. Springer, Berlin (2014)

    Google Scholar 

  2. Einstein, A.: The foundation of the general theory of relativity. Annalen Phys. 49, 769 (1916)

    ADS  CAS  Google Scholar 

  3. Robert, M.W.: General Relativity, The University of Chicago Press (1984)

  4. Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)

    ADS  Google Scholar 

  5. Kerner, R., Mann, R.B.: Fermions tunneling from black holes, Class. Quant. Gravit. 25, 095014(2008); ibid. Charged fermions tunneling from Kerr-Newman black holes, Phys. Lett. B 665, 277(2008)

  6. Kraus, P., Wilczek, F.: Self-interaction correction to black hole radiance. Nucl. Phys. B 433, 403 (1995)

    ADS  Google Scholar 

  7. Agheben, M., Nadalini, M., Vanzo, L., Zerbibi, S.: Hawking radiation as tunneling for extremal and rotating black holes. JHEP. 0505, 014 (2005)

    ADS  MathSciNet  Google Scholar 

  8. Vries, A.D., Kaler, T.S.: Black hole tunnel phenomenon. Phys. Rev. D 65, 104022 (2002)

    ADS  MathSciNet  Google Scholar 

  9. Jiang, Q.Q.: Dirac particle tunneling from black rings. Phys. Rev. D 78, 044009 (2008)

    ADS  MathSciNet  Google Scholar 

  10. Jian, T., Bing-Bing, C.: Fermions tunneling from Kerr and Kerr-Newman black holes. Acta Physica Polonica 40, 241 (2009)

    MathSciNet  CAS  Google Scholar 

  11. Yale, A.: Exact Hawking radiation of scalars, fermions, and bosons using the tunneling method without back-reaction. Phys. Lett. B 697, 398 (2011)

    ADS  MathSciNet  CAS  Google Scholar 

  12. Javed, W., Babar, R.: Hawking radiation as quantum tunneling phenomenon. Proceedings of the Fifteenth Marcel Grossmann Meeting, Vol. 3, 905. World Scientific (2022)

  13. Javed, W., Babar, R.: Generalization of bosonic quantum tunneling with quantum effects. Punjab Univ. J. Math. 52, 6 (2020)

    MathSciNet  Google Scholar 

  14. Javed, W., Babar, R., Övgün, A.: Hawking radiation from cubic and quartic black holes via tunneling of GUP corrected scalar and fermion particles. Mod. Phys. Lett. A 34, 1950057 (2019)

    ADS  MathSciNet  CAS  Google Scholar 

  15. Javed, W., Babar, R.: Fermions tunneling and quantum corrections for quintessential Kerr-Newman-AdS Black Hole. Adv. High Energy Phys. 2019, 2759641 (2019)

    Google Scholar 

  16. Babar, R., Javed, W., Övgün, A.: Effect of the GUP on the Hawking radiation of black hole in 2+1 dimensions with quintessence and charged BTZ-like magnetic black hole. Mod. Phys. Lett. A 35, 2050104 (2020)

    ADS  MathSciNet  CAS  Google Scholar 

  17. Zhang, J.Y., Zhao, Z.: Hawking radiation via tunneling from Kerr black holes, Mod. Phys. Lett. A 20, 1673 (2005); ibid. Charged particles’ tunneling from the Kerr-Newman black hole. Phys. Lett. B 638, 110 (2006)

  18. Jiang, Q., Wu, S.Q., Cai, X.: Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes. Phys. Rev. D 73, 064003 (2006)

    ADS  MathSciNet  Google Scholar 

  19. Sharif, M., Javed, W.: Fermions tunneling from charged anti-de Sitter black holes. Can. J. Phys. 90, 903 (2012)

    ADS  CAS  Google Scholar 

  20. Javed, W., Ali, R., Babar, R., Övgün, A.: Tunneling of massive vector particles from types of BTZ-like black holes. Eur. Phys. J. Plus 134, 511 (2019)

    CAS  Google Scholar 

  21. Javed, W., Babar, R.: Vector particles tunneling in the background of quintessential field involving quantum effects. Chin. J. Phys. 61, 138 (2019)

    MathSciNet  Google Scholar 

  22. Amati, D., Ciafaloni, M., Veneziano, G.: Can space-time be probed below the string size? Phys. Lett. B 216, 41 (1989)

    ADS  CAS  Google Scholar 

  23. Gross, D.J., Mende, P.F.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407 (1988)

    ADS  MathSciNet  Google Scholar 

  24. Amelino-Camelia, G.: Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002)

    ADS  Google Scholar 

  25. Amelino-Camelia, G.: Testable scenario for relativity with minimum length. Phys. Lett. B 510, 255 (2001)

    ADS  CAS  Google Scholar 

  26. Cortes, J.L., Gamboa, J.: Quantum uncertainty in doubly special relativity. Phys. Rev. D 71, 065015 (2005)

    ADS  MathSciNet  Google Scholar 

  27. Pikovski, I., Vanner, M.R., Aspelmeyer, M., Kim, M.S., Brukner, V.: Probing Planck-scale physics with quantum optics. Nat. Phys. 8, 393 (2012)

    CAS  Google Scholar 

  28. Marin, F., et al.: Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nat. Phys. 9, 71 (2013)

    CAS  Google Scholar 

  29. Bawaj, M., et al.: Probing deformed commutators with macroscopic harmonic oscillators. Nat. Commun. 6, 7503 (2015)

    ADS  CAS  PubMed  Google Scholar 

  30. Amelino-Camelia, G.: Quantum-spacetime phenomenology. Living Rev. Rel. 16 (2013)

  31. Hossenfelder, S.: Minimal length scale scenarios for quantum gravity. Living Rev. Rel. 16 (2013)

  32. Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145 (1995)

    ADS  Google Scholar 

  33. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995)

    ADS  MathSciNet  CAS  Google Scholar 

  34. Maggiore, M.: A Generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65 (1993)

    ADS  MathSciNet  CAS  Google Scholar 

  35. Maggiore, M.: Quantum groups, gravity and the generalized uncertainty principle. Phys. Rev. D 49, 5182 (1994)

    ADS  MathSciNet  CAS  Google Scholar 

  36. Scardigli, F.: Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment. Phys. Lett. B 452, 39 (1999)

    ADS  CAS  Google Scholar 

  37. Adler, R.J., Chen, P., Santiago, D.I.: The Generalized uncertainty principle and black hole remnants. Gen. Rel. Grav. 33, 2101 (2001)

    ADS  MathSciNet  Google Scholar 

  38. Das, S., Vagenas, E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)

    ADS  PubMed  Google Scholar 

  39. Nozari, K., Mehdipour, S.H.: Quantum gravity and recovery of information in black hole evaporation. Europhys. Lett. 84, 20008 (2008)

    ADS  Google Scholar 

  40. Bosso, P., Obregon, O., Rastgoo, S., Yupanqui, W.: Deformed algebra and the effective dynamics of the interior of black holes. Class. Quant. Grav. 38, 145006 (2021)

    ADS  MathSciNet  CAS  Google Scholar 

  41. Das, S.: Quantum Raychaudhuri equation. Phys. Rev. D 89, 084068 (2014)

    ADS  Google Scholar 

  42. Das, S., Bhaduri, R.K.: Dark matter and dark energy from a Bose-Einstein condensate. Class. Quant. Grav. 32, 105003 (2015)

    ADS  Google Scholar 

  43. Burger, D.J., Moynihan, N., Das, S., Shajidul Haque, S., Underwood, B.: Towards the Raychaudhuri equation beyond general relativity. Phys. Rev. 98, 024006 (2018)

    MathSciNet  CAS  Google Scholar 

  44. Das, S., Haque, S.S., Underwood, B.: Constraints and horizons for de Sitter with extra dimensions. Phys. Rev. D 100, 046013 (2019)

    ADS  MathSciNet  CAS  Google Scholar 

  45. Konishi, K., Paffuti, G., Provero, P.: Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B 234, 276 (1990)

    ADS  MathSciNet  CAS  Google Scholar 

  46. Maggiore, M.: The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 319, 83 (1993)

    ADS  MathSciNet  Google Scholar 

  47. Amelino-Camelia, G.: Doubly-special relativity: first results and key open problems. Int. J. Mod. Phys. D 11, 1643 (2002)

    ADS  MathSciNet  CAS  Google Scholar 

  48. Scardigli, F., Casadio, R.: Generalized uncertainty principle, extra dimensions and holography. Class. Quant. Grav. 20, 3915 (2003)

    ADS  MathSciNet  Google Scholar 

  49. Wald, R.M.: General Relativity. University of Chicago, Chicago, IL (1984)

    Google Scholar 

  50. Berger, B.K., Chitre, D.M., Moncrief, V.E., Nutku, Y.: Hamiltonian formulation of spherically symmetric gravitational fields. Phys. Rev. D 5, 2467 (1972)

    ADS  Google Scholar 

  51. Grumiller, D., Kummer, W., Vassilevich, D.V.: Dilaton gravity in two dimensions. Phys. Rep. 369, 327 (2002)

    ADS  MathSciNet  CAS  Google Scholar 

  52. Russo, J.G., Tseytlin, A.A.: Scalar-tensor quantum gravity in two dimensions. Nucl. Phys. B 382, 259 (1992)

    ADS  MathSciNet  Google Scholar 

  53. Odintsov, S.D., Shapiro, I.L.: One-loop renormalization of two-dimensional induced quantum gravity. Phys. Lett. B 263, 183 (1991)

    ADS  MathSciNet  CAS  Google Scholar 

  54. Talmadge, C., Berthias, J.P., Hellings, R.W., Standish, E.M.: Model-independent constraints on possible modifications of Newtonian gravity. Phys. Rev. Lett. 61, 1159 (1988)

    ADS  CAS  PubMed  Google Scholar 

  55. Sakalli, I., Mirekhtiary, S.F.: Spectroscopy of Rindler modified Schwarzschild black hole. Astrophys. Space Sci. 350, 727 (2014)

    ADS  Google Scholar 

  56. Grumiller, D.: Model for gravity at large distances. Phys. Rev. Lett. 105, 211303 (2010)

    ADS  PubMed  Google Scholar 

  57. Carloni, S., Grumiller, D., Preis, F.: Solar system constraints on Rindler acceleration. Phys. Rev. D 83, 124024 (2011)

    ADS  Google Scholar 

  58. Sharif, M., Javed, W.: Fermions tunneling from charged accelerating and rotating black holes with NUT parameter. Eur. Phys. J. C 72, 1997 (2012)

    ADS  Google Scholar 

  59. Ali, R., Babar, R., Asgher, M.: Gravitational analysis of rotating charged black hole-like solution in Einstein–Gauss–Bonnet gravity. Ann. Phys. 2200074, 12 (2022)

    MathSciNet  Google Scholar 

  60. Ali, R., Babar, R., Sahoo, P.K.: Quantum gravity evolution in the Hawking radiation of a rotating regular Hayward black hole. Phys. Dark Universe 35, 100948 (2022)

    Google Scholar 

  61. Javed, W., Abbas, G., Ali, R.: Charged vector particle tunneling from a pair of accelerating and rotating and 5D gauged super-gravity black holes. Eur. Phys. J. C 77, 296 (2017)

    ADS  Google Scholar 

  62. Övgün, A., Javed, W., Ali, R.: Tunneling Glashow-Weinberg-Salam model particles from black hole solutions in Rastall Theory. Adv. High Energy Phys. 2018, 11 (2018)

    MathSciNet  Google Scholar 

  63. Javed, W., Ali, R., Abbas, G.: Charged vector particles tunneling from black ring and 5D black hole. Can. J. Phys. 97, 176 (2018)

    ADS  Google Scholar 

  64. Javed, W., Ali, R., Babar, R., Övgün, A.: Tunneling of massive vector particles under influence of quantum gravity. Chin. Phys. C 144, 015104 (2020)

    ADS  Google Scholar 

  65. Ali, R., Bamba, K., Shah, S.A.A.: Effect of quantum gravity on the stability of black holes. Symmetry 631, 11 (2019)

    Google Scholar 

  66. Ali, R., Bamba, K., Asgher, M., Malik, M.F.: Gravitational analysis of neutral regular black hole in Rastall gravity. Mod. Phys. Lett. A 35, 2050225 (2020)

    ADS  MathSciNet  Google Scholar 

  67. Ali, R., Asgher, M.: Tunneling analysis under the influences of Einstein-Gauss-Bonnet black holes gravity theory. New Astron. 93, 101759 (2022)

    CAS  Google Scholar 

  68. Li, X.Q., Chen, G.R.: Massive vector particles tunneling from Kerr and Kerr-Newman black holes. Phys. Lett. B 751, 34 (2015)

    ADS  CAS  Google Scholar 

  69. Li, X.Q.: Massive vector particles tunneling from black holes influenced by the generalized uncertainty principle. Phys. Lett. B 763, 80 (2016)

    ADS  CAS  Google Scholar 

  70. Wentzel, G., Physik, Z.: Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Phys 38, 518 (1926)

    ADS  Google Scholar 

  71. Kramers, H.A.: Wellenmechanik und halbzahlige Quantisierung Zeitschrift für Physik 39, 828 (1926)

  72. Brillouin, L., Hebd, C.R.: La mécanique ondulatorie de Schrödinger: une méthode générale de resolution par approximations successives. Acad. Sci. 183, 24 (1926)

    Google Scholar 

  73. Övgün, A., Jusufi, K.: Massive vector particles tunneling from noncommutative charged black holes and their GUP-corrected thermodynamics. Eur. Phys. J. Plus 131, 177 (2016)

    Google Scholar 

  74. Sakalli, I., Övgün, A., Jusufi, K.: GUP assisted Hawking radiation of rotating acoustic black holes. Astrophys. Space Sci. 361, 330 (2016)

    ADS  MathSciNet  Google Scholar 

  75. Banerjee, R., Majhi, B.R.: Quantum tunneling and back reaction. Phys. Lett. B 662, 62 (2018)

    ADS  MathSciNet  Google Scholar 

  76. Banerjee, R., Majhi, B.R.: Quantum tunneling beyond semiclassical approximation. J. Adv. High Energy Phys. 2008, 095 (2008)

    MathSciNet  Google Scholar 

  77. Banerjee, R., Majhi, B.R., Samanta, S.: Noncommutative black hole thermodynamics. Phys. Rev. D 77, 124035 (2008)

    ADS  MathSciNet  Google Scholar 

  78. Pradhan, P.: CFT and logarithmic corrections to the black hole entropy product formula. Adv. High Energy Phys. 2017, 2367387 (2017)

    Google Scholar 

  79. Das, S., Majumdar, P., Bhaduri, R.K.: General logarthmic corrections to black hole entropy. Class. Quantum Grav. 19, 2355 (2002)

    ADS  Google Scholar 

  80. Akbar, M.M., Saurya, D.: Entropy corrections for Schwarzschild and Reissner-Nordstrom black holes. Class. Quant. Grav. 21, 1383 (2004)

    ADS  MathSciNet  Google Scholar 

  81. Govindarajan, T.R., Kaul, R.K., Suneeta, V.: Logarithmic correction to the Bekenstein Hawking entropy of the BTZ black hole. Class. Quantum Grav. 18, 2877 (2001)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The paper was funded by the National Natural Science Foundation of China 11975145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Tiecheng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, R., Tiecheng, X. & Babar, R. First-order quantum corrections of tunneling radiation in modified Schwarzschild–Rindler black hole. Gen Relativ Gravit 56, 13 (2024). https://doi.org/10.1007/s10714-024-03206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03206-y

Keywords

Navigation