Skip to main content
Log in

Suppression of Superconducting Fluctuations in Multiband Superconductors as a Mechanism for Increasing the Critical Temperature (Brief Review)

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2024

This article has been updated

The combination of strongly coupled Cooper pairs and weak superconducting fluctuations is an important prerequisite for achieving high-temperature superconductivity. The review is devoted to the implementation of this condition in multiband superconductors, in which strongly coupled pairs in the shallow conduction band (the Fermi level is close to the band edge) coexist with ordinary, weakly fluctuating Cooper pairs formed in the deep band. As a result of the Josephson coupling between condensates in different bands, such a system is characterized by a high critical coherence temperature due to the presence of strongly coupled pairs and the suppression of superconducting fluctuations. This suppression does not require any special preconditions, and is almost total even if the Josephson coupling between the bands is weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Change history

REFERENCES

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. B 108, 1175 (1957).

    ADS  Google Scholar 

  2. J. G. Bednorz and K. A. Müller, Zeitschr. Phys., B 64, 189 (1957).

  3. V. J. Emery and S. A. Kivelson, Nature (London, U.K.) 374, 434 (1995).

    ADS  Google Scholar 

  4. M. Buchanan, Nature (London, U.K.) 409, 8 (2001).

    ADS  Google Scholar 

  5. M. V. Sadovskii, Phys. Usp. 44, 515 (2001).

    ADS  Google Scholar 

  6. C. Varma, Nature (London, U.K.) 468, 184 (2010).

    ADS  Google Scholar 

  7. S. I. Vedeneev, Phys. Usp. 64, 890 (2021).

    ADS  Google Scholar 

  8. S. Borisenko, Nat. Mater. 12, 600 (2013).

    ADS  Google Scholar 

  9. I. M. Lifshitz, Sov. Phys. JETP 38, 1569 (1969).

    Google Scholar 

  10. G. E. Volovik, Low Temp. Phys. 43, 47 (2017).

    ADS  Google Scholar 

  11. A. I. Coldea and M. D. Watson, Ann. Rev. Condens. Matter Phys. 9, 125 (2018).

    ADS  Google Scholar 

  12. J. Ketterson and S. Song, Superconductivity (Cambridge Univ. Press, Cambridge, UK, 1999).

    Google Scholar 

  13. A. Larkin and A. Varlamov, Theory of Fluctuations in Superconductors (Oxford Univ. Press, Oxford, USA, 2005).

    Google Scholar 

  14. K. B. Efetov and A. I. Larkin, Sov. Phys. JETP 39, 1129 (1974).

    ADS  Google Scholar 

  15. L. P. Gor’kov and I. E. Dzyaloshinskii, Sov. Phys. JETP 40, 198 (1975).

    ADS  Google Scholar 

  16. D. Jérome, A. Mazaud, M. Ribault, and K. Bechgaard, J. Phys. Lett. 41, 95 (1980).

    Google Scholar 

  17. Y. Lubashevsky, E. Lahoud, K. Chashka, D. Podolsky, and A. Kanigel, Nat. Phys. 8, 309 (2012).

    Google Scholar 

  18. K. Okazaki, Y. Ito, Y. Ota, Y. Kotani, T. Shimojima, T. Kiss, S. Watanabe, C.-T. Chen, S. Niitaka, T. Hanaguri, H. Takagi, A. Chainani, and S. Shin, Sci. Rep. 4, (2014).

  19. S. Kasahara, T. Watashige, Y. K. T. Hanaguri, T. Yamashita, Y. Shimoyama, Y. Mizukami, R. Endo, H. Ikeda, A. Kazushi, T. Terashima, S. Uji, T. Wolf, H. von Löhneysenf, T. Shibauchi, and Y. Matsuda, Proc. Natl. Acad. Sci. U. S. A. 111, 16309 (2014).

    ADS  Google Scholar 

  20. S. Rinott, K. B. Chashka, A. Ribak, E. D. L. Rienks, A. Taleb-Ibrahimi, P. L. Fevre, F. Bertran, M. Randeria, and A. Kanigel, Sci. Adv. 3, e1602372 (2017).

  21. T. Hanaguri, S. Kasahara, J. Böker, I. Eremin, T. Shibauchi, and Y. Matsuda, Phys. Rev. Lett. 122, 077001 (2019).

  22. W. Huang, H. Lin, C. Zheng, Y. Yin, X. Chen, and S.‑H. Ji, Phys. Rev. B 103, 094502 (2021).

  23. H. Lin, W. Huang, G. Rai, Y. Yin, L. He, Q.-K. Xue, S. Haas, S. Kettemann, X. Chen, and S.-H. Ji, Phys. Rev. B 107, 104517 (2023).

  24. Y. Mizukami, M. Haze, O. Tanaka, K. Matsuura, D. Sano, J. Böker, I. Eremin, S. Kasahara, Y. Matsuda, and T. Shibauchi, Commun. Phys. 6, 183 (2023).

    Google Scholar 

  25. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).

    ADS  Google Scholar 

  26. V. A. Moskalenko, Phys. Met. Metallogr. 8, 25 (1959).

    Google Scholar 

  27. M. Greiner, C. A. Regal, and D. S. Jin, Nature (London, U.K.) 426, 537 (2003).

    ADS  Google Scholar 

  28. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    ADS  Google Scholar 

  29. L. P. Gor’kov, Sov. Phys. JETP 9, 1364 (1959).

    Google Scholar 

  30. H. Doh, M. Sigrist, B. K. Cho, and S.-I. Lee, Phys. Rev. Lett. 83, 5350 (1999).

    ADS  Google Scholar 

  31. I. Askerzade, A. Gencer, and N. Güçlü, Supercond. Sci. Technol. 15, L13 (2002).

    ADS  Google Scholar 

  32. I. Askerzade, A. Gencer, and N. Güçlü, Supercond. Sci. Technol. 15, L17 (2002).

    ADS  Google Scholar 

  33. T. T. Saraiva, P. J. F. Cavalcanti, A. Vagov, A. S. Vasenko, A. Perali, L. Dell’Anna, and A. A. Shanenko, Phys. Rev. Lett. 125, 217003 (2020).

  34. A. A. Shanenko, T. T. Saraiva, A. Vagov, A. S. Vasenko, and A. Perali, Phys. Rev. B 105, 214527 (2022).

  35. V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  36. L. Salasnich, A. A. Shanenko, A. Vagov, J. A. Aguiar, and A. Perali, Phys. Rev. B 100, 064510 (2019).

  37. T. T. Saraiva, L. I. Baturina, and A. A. Shanenko, J. Phys. Chem. Lett. 12, 11604 (2021).

    Google Scholar 

  38. B. T. Geilikman, R. O. Zaitsev, and V. Z. Kresin, Sov. Phys. Solid State 9, 642 (1967).

    Google Scholar 

  39. V. Z. Kresin, J. Low Temp. Phys. 11, 519 (1973).

    ADS  Google Scholar 

  40. J. Geyer, R. M. Fernandes, V. G. Kogan, and J. Schmalian, Phys. Rev. B 82, 104521 (2010).

  41. A. A. Shanenko, M. V. Miloševic, F. M. Peeters, and A. V. Vagov, Phys. Rev. Lett. 106, 047005 (2011).

  42. A. Z. Pokrovskii and V. L. Patashinskii, Fluctuation Theory of Phase Transitions (Pergamon, Oxford, USA, 1999).

    Google Scholar 

  43. D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977.

    ADS  Google Scholar 

  44. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Dover, New York, 2003).

    Google Scholar 

  45. A. Vagov, A. A. Shanenko, M. V. Miloševic, V. M. Axt, V. M. Vinokur, J. A. Aguiar, and F. M. Peeters, Phys. Rev. B 93, 174503 (2016).

  46. S. Wolf, A. Vagov, A. A. Shanenko, V. M. Axt, A. Perali, and J. A. Aguiar, Phys. Rev. B 95, 094521 (2017).

  47. J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).

    ADS  Google Scholar 

  48. P. G. de Gennes, Superconductivity of Metals and Alloys (CRC, New York, 1999).

    Google Scholar 

  49. A. Vagov, A. A. Shanenko, M. V. Miloševic, V. M. Axt, and F. M. Peeters, Phys. Rev. B 86, 144514 (2012).

  50. A. Cappellaro and L. Salasnich, Sci. Rep. 10, 9088 (2020).

    ADS  Google Scholar 

  51. H. Z. Zhi, T. Imai, F. L. Ning, J.-K. Bao, and G.‑H. Cao, arXiv: 1501.00713 (2015).

  52. C. C. Hao Jiang and Guanghan Cao, arXiv: 1412.1309 (2015).

  53. R. Brusetti, P. Monceau, M. Potel, P. Gougeon, and M. Sergent, Solid State Commun. 66, 181 (1988).

    ADS  Google Scholar 

  54. J.-F. Mercure, A. F. Bangura, X. Xu, N. Wakeham, A. Carrington, P. Walmsley, M. Greenblatt, and N. E. Hussey, Phys. Rev. Lett. 108, 187003 (2012).

  55. J.-K. Bao, J.-Y. Liu, C.-W. Ma, Z.-H. Meng, Z.‑T. Tang, Y.-L. Sun, H.-F. Zhai, H. Jiang, H. Bai, C.-M. Feng, Z.-A. Xu, and G.-H. Cao, Phys. Rev. X 5, 011013 (2015).

  56. Z.-T. Tang, J.-K. Bao, Y. Liu, Y.-L. Sun, A. Ablimit, H.-F. Zhai, H. Jiang, C.-M. Feng, Z.-A. Xu, and G.‑H. Cao, Phys. Rev. B 91, 020506(R) (2015).

  57. Z.-T. Tang, J.-K. Bao, Z. Wang, H. Bai, H. Jiang, Y. Liu, H.-F. Zhai, C.-M. Feng, Z.-A. Xu, and G.‑H. Cao, Sci. China Mater. 58, 16 (2015).

    Google Scholar 

  58. C. Xu, N. Wu, G.-X. Zhi, B.-H. Lei, X. Duan, F. Ning, C. Cao, and Q. Chen, npj Comput. Mater. 6, 30 (2020).

    Google Scholar 

  59. H. Lin, W. Huang, G. Rai, Y. Yin, L. He, Q.-K. Xue, S. Haas, S. Kettemann, X. Chen, and S.-H. Ji, arXiv: 2209.00758 (2023).

  60. S.-Q. Wu, C. Cao, and G.-H. Cao, Phys. Rev. B 100, 155108 (2019).

  61. J. Ranninger and J. M. Robin, Phys. Rev. B 53, R11961 (1996).

  62. J. Sous, Y. He, and S. A. Kivelson, npj Quantum Mater. 8, 25 (2023).

  63. T. Terashima, N. Kikugawa, A. Kiswandhi, et al., Phys. Rev. B 90, 144517 (2014).

  64. . Q. Chen, J. Stajic, S. Tan, and K. Levin, Phys. Rep. 412, 1 (2005).

    ADS  Google Scholar 

  65. Y. Lubashevsky, E. Lahoud, K. Chashka, D. Podolsky, and A. Kanigel, arXiv: 1107.1487 (2012).

  66. K. Okazaki, Y. Ito, Y. Ota, Y. Kotani, T. Shimojima, T. Kiss, S. Watanabe, C.-T. Chen, S. Niitaka, T. Hanaguri, H. Takagi, A. Chainani, and S. Shin, arXiv: 1307.7845 (2014).

  67. Y. Nakagawa, Y. Kasahara, T. Nomoto, R. Arita, T. Nojima, and Y. Iwasa, Science (Washington, DC, U. S.) 372, 190 (2021).

    ADS  Google Scholar 

  68. Y. Suzuki, K. Wakamatsu, J. Ibuka, H. Oike, T. Fujii, K. Miyagawa, H. Taniguchi, and K. Kanoda, Phys. Rev. X 12, 011016 (2022).

  69. S. Lee, J.-H. Kim, and Y.-W. Kwon, arXiv: 2307.12008 (2023).

  70. S. Lee, J. Kim, H.-T. Kim, S. Im, S. An, and K. H. Auh, arXiv: 2307.12037 (2023).

  71. L. Si, M. Wallerberger, A. Smolyanyuk, S. di Cataldo, J. M. Tomczak, and K. Held, arXiv: 2308.04427 (2023).

  72. H. Wu, L. Yang, B. Xiao, and H. Chang, arXiv: 2308.01516 (2023).

  73. K. Kumar, N. K. Karn, Y. Kumar, and V. P. S. Awana, arXiv: 2308.03544 (2023).

  74. Q. Hou, W. Wei, X. Zhou, Y. Sun, and Z. Shi, arXiv: 2308.01192.

  75. Y. Jiang, S. B. Lee, J. Herzog-Arbeitman, J. Yu, X. Feng, H. Hu, D. Calugaru, P. S. Brodale, E. L. Gor-mley, M. G. Vergniory, C. Felser, S. Blanco-Canosa, C. H. Hendon, L. M. Schoop, and B. A. Bernevig, arXiv: 2308.05143 (2023).

  76. D. Garisto, Nature (London, U.K.) 620, 705 (2023).

    ADS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the “Priority 2030” program of the National Research Nuclear University MEPhI, and was also supported by the Ministry of Science and Higher Education of the Russian Federation (state task project no. FSWU-2023-0031). Arkady Shanenko and Alexei Vagov thank the Basic Research Program of the HSE Research University that was used to calculate the critical temperature shift. Vasily Stolyarov thanks for the support of the Russian Science Foundation (project no. 21-72-30026 https://rscf.ru/en/project/21-72-30026) and the Ministry of Science and Higher Education of the Russian Federation (state task project no. FSMG-2023-0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Krasavin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasavin, A.V., Vagov, A.V., Vasenko, A.S. et al. Suppression of Superconducting Fluctuations in Multiband Superconductors as a Mechanism for Increasing the Critical Temperature (Brief Review). Jetp Lett. 119, 233–250 (2024). https://doi.org/10.1134/S0021364023603755

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023603755

Navigation