Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-03T01:08:13.208Z Has data issue: false hasContentIssue false

Position-independent self-adaptive wireless power transfer: topology, modeling, and design

Published online by Cambridge University Press:  29 January 2024

David West
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA
Jinqun Ge
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA
Guoan Wang*
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA
*
Corresponding author: Guoan Wang; Email: gwang@cec.sc.edu

Abstract

Wireless power transfer (WPT) is an emerging technology with many promising applications where transmitting power via wired connections is undesirable. However, near-field WPT between magnetically coupled inductors is highly susceptible to positional changes, with power transfer efficiency (PTE) suffering if the coils are misaligned. To combat this effect, many position-independent, self-adaptive, inductive WPT schemes have been developed. Recent work indicates that it is possible to passively achieve high PTE across the operating range with nonlinear capacitors. In this work, the functionality of nonlinear WPT circuits is investigated, and fundamental design equations are derived and validated. A simplified design procedure is proposed for the position-independent self-adaptive WPT using nonlinear capacitors, wherein the ideal capacitance is extracted for each coupling factor. The efficacy of the method is demonstrated with an experimental circuit. Future work in this area is also proposed.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, K, Choudhury, D and Matsumoto, H (2013) Wireless power transmission, technology, and applications. Proceedings of the IEEE 101, 12711275.CrossRefGoogle Scholar
Kurs, A, Karalis, A, Moffatt, R, Joannopoulos, JD, Fisher, P and Soljacic, M (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317, 8386.CrossRefGoogle ScholarPubMed
Hui, SYR, Zhong, W and Lee, CK (2013) A critical review of recent progress in midrange wireless power transfer. IEEE Transactions on Power Electronics 29, 45004511.CrossRefGoogle Scholar
Wei, X, Wang, Z and Dai, H (2014) A critical review of wireless power transfer via strongly coupled magnetic resonances. Energies 7, 43164341.CrossRefGoogle Scholar
Li, P and Bashirullah, R (2007) A wireless power interface for rechargeable battery operated medical implants. IEEE Transactions on Circuits and Systems II: Express Briefs 54, 912916.Google Scholar
Li, S and Mi, CC (2015) Wireless power transfer for electric vehicle applications. IEEE Journal of Emerging and Selected Topics in Power Electronics 3, 417.Google Scholar
Lu, X, Wang, P, Niyato, D, Kim, DI and Han, Z (2014) Wireless networks with RF energy harvesting: a contemporary survey. IEEE Communications Surveys and Tutorials 17, 757789.CrossRefGoogle Scholar
Jabbar, H, Song, YS and Jeong, TT (2010) RF energy harvesting system and circuits for charging of mobile devices. IEEE Transactions on Consumer Electronics 56, 247253.CrossRefGoogle Scholar
Walsh, C, Rondineau, S, Jankovic, M, Zhao, G and Popovic, Z (2005) A conformal 10 GHz rectenna for wireless powering of piezoelectric sensor electronics. In Microwave Symposium Digest, 143146.CrossRefGoogle Scholar
Jaffe, P and McSpadden, J (2013) Energy conversion and transmission modules for space solar power. Proceedings of the IEEE 101, 14241437.CrossRefGoogle Scholar
Sample, AP, Meyer, DA and Smith, JR (2011) Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Transactions on Industrial Electronics 58, 544554.CrossRefGoogle Scholar
Heebl, JD, Thomas, EM, Penno, RP and Grbic, A (2014) Comprehensive analysis and measurement of frequency-tuned and impedance-tuned wireless non-radiative power-transfer systems. IEEE Antennas and Propagation Magazine 56, 131148.CrossRefGoogle Scholar
Jang, B-J, Lee, S and Yoon, H-G (2012) HF-band wireless power transfer system: concept, issues, and design. Progress in Electromagnetics Research 124, 211231.CrossRefGoogle Scholar
Lee, J, Lim, Y-S, Yang, W-J and Lim, S-O (2014) Wireless power transfer system adaptive to change in coil separation. IEEE Transactions on Antennas and Propagation 62, 889897.CrossRefGoogle Scholar
Beh, TC, Kato, M, Imura, T, Oh, S and Hori, Y (2013) Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling. IEEE Transactions on Industrial Electronics 60, 36893698.CrossRefGoogle Scholar
Bito, J, Jeong, S and Tentzeris, MM (2017) A novel heuristic passive and active matching circuit design method for wireless power transfer to moving objects. IEEE Transactions on Microwave Theory & Techniques 65, 10941102.CrossRefGoogle Scholar
Abdelatty, O, Wang, X and Mortazawi, A (2019) Position-insensitive wireless power transfer based on nonlinear resonant circuits. IEEE Transactions on Microwave Theory & Techniques 67, 38443855.CrossRefGoogle Scholar
Zhuang, Y, Chen, A, Xu, C, Huang, Y, Zhao, H and Zhou, J (2019) Range-adaptive wireless power transfer based on differential coupling using multiple bi-directional coils. IEEE Transactions on Industrial Electronics 67, 75197528.CrossRefGoogle Scholar
Niu, W, Jiang, J, Ye, C and Gu, W (2022) Frequency splitting suppression in wireless power transfer using hemispherical spiral coils. AIP Advances 12, .CrossRefGoogle Scholar
Chai, R and Mortazawi, A (2021) A position-insensitive wireless power transfer system employing coupled nonlinear resonators. IEEE Transactions on Microwave Theory & Techniques 69, 17521759.CrossRefGoogle Scholar
Heebl, JD (2011) Development and characterization of a tunable resonant shielded loop wireless non-radiative power transfer system. M.S., School of Engineering, Univ. of Dayton.Google Scholar
de Queiroz, ACM (2003) Mutual inductance and inductance calculations by Maxwell’s method. UFRJ, Rio de Janeiro.Google Scholar
Ge, J, Wang, T, Peng, Y and Wang, G (2022) Electrically tunable microwave technologies with ferromagnetic thin film: recent advances in design techniques and applications. IEEE Microwave Magazine 23, 4863.CrossRefGoogle Scholar
Zhang, Y, Ge, J and Wang, G (2022) Enabling electrically tunable radio frequency components with advanced microfabrication and thin film techniques. Journal of Central South University 29, 32483260.CrossRefGoogle Scholar