Skip to main content
Log in

Zr−Doped OMS−2 Nano−rods as Efficient Catalysts for Degradation of Tetracycline via Peroxydisulfate Activation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Zirconium−incorporated manganese oxide octahedral molecular sieve (Zr−OMS−2) was fabricated through a reflux method and applied to decompose tetracycline (TC) in an aqueous solution by peroxydisulfate (PDS) activation. The characteristics of Zr−OMS−2 was studied by Fourier transform infrared spectroscopy (FT−IR), X−ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), N2 adsorption−desorption isotherms, and X−ray photoelectron spectroscopy (XPS). Under the optimized conditions, the TC degradation efficiency in the Zr−OMS−2/PDS system was 94.7% within 50 min, which was almost twice the degradation efficiency in presence of pure OMS−2 under the same conditions (52.3%). This system showed satisfactory performance over a wide range of pH (2−9). The results of radical trapping experiments proved that the removal of TC can be attributed to the generation of HO• and SO4 free radicals. Additionally, the catalyst demonstrated satisfactory stability and reusability during four consecutive cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All of the data presented would be available on request.

References

  1. G. Gopal, S. A. Alex, N. Chandrasekaran, and A. Mukherjee (2020). RSC Adv. 10, 27081. https://doi.org/10.1039/D0RA04264A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. Daghrir and P. Drogui (2013). Environ. Chem. Lett. 11, 209. https://doi.org/10.1007/s10311−013−0404−8.

    Article  CAS  Google Scholar 

  3. J. Cao, L. Lai, B. Lai, G. Yao, X. Chen, and L. Song (2019). J. Chem. Eng. 364, 45. https://doi.org/10.1016/j.cej.2019.01.113.

    Article  CAS  Google Scholar 

  4. H. Xia, J. Chen, X. Chen, K. Huang, and Y. Wu (2019). Environ. Pollut. 252, 1068. https://doi.org/10.1016/j.envpol.2019.06.048.

    Article  CAS  PubMed  Google Scholar 

  5. Z. Zhao, G. Zhang, Y. Zhang, M. Dou, and Y. Li (2020). Water Res. 185, 116225. https://doi.org/10.1016/j.watres.2020.116225.

    Article  CAS  PubMed  Google Scholar 

  6. H. Peng, J. Cao, W. Xiong, Z. Yang, M. Jia, S. Sun, and H. Cai (2021). J. Hazard. Mater. 402, 123498. https://doi.org/10.1016/j.jhazmat.2020.123498.

    Article  CAS  PubMed  Google Scholar 

  7. M. Duan, L. Jiang, B. Shao, C. Feng, H. Yu, H. Guo, and W. Tang (2021). Appl. Catal. B: Environ. 297, 120439. https://doi.org/10.1016/j.apcatb.2021.120439.

    Article  CAS  Google Scholar 

  8. T. Lu, X. Xu, X. Liu, and T. Sun (2017). J. Chem. Eng. 308, 151. https://doi.org/10.1016/j.cej.2016.09.009.

    Article  CAS  Google Scholar 

  9. H. Wang, T. Chen, D. Chen, X. Zou, M. Li, F. Huang, and H. Liu (2020). Appl. Catal. B: Environ. 260, 118203. https://doi.org/10.1016/j.apcatb.2019.118203.

    Article  CAS  Google Scholar 

  10. X. Li, J. Xiong, X. Gao, J. Ma, Z. Chen, B. Kang, and J. Huang (2020). J. Hazard. Mater. 387, 121690. https://doi.org/10.1016/j.jhazmat.2019.121690.

    Article  CAS  PubMed  Google Scholar 

  11. J. L. Wang and L. J. Xu (2012). Crit Rev Environ Sci Technol. 42, 251. https://doi.org/10.1080/10643389.2010.507698.

    Article  CAS  Google Scholar 

  12. Y. Guo, L. Yan, X. Li, T. Yan, W. Song, T. Hou, and M. Xu (2021). Sci. Total Environ. 783, 147102. https://doi.org/10.1016/j.scitotenv.2021.147102.

    Article  CAS  PubMed  Google Scholar 

  13. H. V. Lutze, S. Bircher, I. Rapp, N. Kerlin, R. Bakkour, M. Geisler, and T. C. Schmidt (2015). Environ. Sci. Technol. 49, 1673. https://doi.org/10.1021/es503496u.

    Article  CAS  PubMed  Google Scholar 

  14. J. Wang and S. Wang (2018). J. Chem. Eng. 334, 1502. https://doi.org/10.1016/j.cej.2017.11.059.

    Article  CAS  Google Scholar 

  15. T. Olmez−Hanci and I. Arslan−Alaton (2013). J. Chem. Eng. 224, 10. https://doi.org/10.1016/j.cej.2012.11.007.

    Article  CAS  Google Scholar 

  16. W. Song, P. Ge, Q. Ke, Y. Sun, F. Chen, H. Wang, and C. Shen (2019). Chemosphere 221, 166. https://doi.org/10.1016/j.chemosphere.2019.01.045.

    Article  CAS  PubMed  Google Scholar 

  17. J. Yan, J. Li, J. Peng, H. Zhang, Y. Zhang, and B. Lai (2019). J. Chem. Eng. 359, 1097. https://doi.org/10.1016/j.cej.2018.11.074.

    Article  CAS  Google Scholar 

  18. Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang, and S. Wang (2014). J. Hazard. Mater. 270, 61. https://doi.org/10.1016/j.cej.2018.11.074.

    Article  CAS  PubMed  Google Scholar 

  19. P. Shao, X. Duan, J. Xu, J. Tian, W. Shi, S. Gao, and S. Wang (2017). J. Hazard. Mater. 322, 532. https://doi.org/10.1016/j.jhazmat.2016.10.020.

    Article  CAS  PubMed  Google Scholar 

  20. W. Huang, S. Xiao, H. Zhong, M. Yan, and X. Yang (2021). J. Chem. Eng. 418, 129297. https://doi.org/10.1016/j.cej.2021.129297.

    Article  CAS  Google Scholar 

  21. J. Deng, Y. Shao, N. Gao, S. Xia, C. Tan, S. Zhou, and X. Hu (2013). J. Chem. Eng. 222, 150. https://doi.org/10.1016/j.cej.2013.02.045.

    Article  CAS  Google Scholar 

  22. L. Tang, Y. Liu, J. Wang, G. Zeng, Y. Deng, H. Dong, and B. Peng (2018). Appl. Catal. B: Environ. 231, 1. https://doi.org/10.1016/j.apcatb.2018.02.059.

    Article  CAS  Google Scholar 

  23. N. Makowska, R. Koczura, and J. Mokracka (2016). Chemosphere 144, 1665. https://doi.org/10.1016/j.chemosphere.2015.10.044.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Liu, Y. Zhao, and J. Wang (2021). Sci. Total Environ. 754, 141883. https://doi.org/10.1016/j.scitotenv.2020.141883.

    Article  CAS  PubMed  Google Scholar 

  25. J. Yang, X. He, J. Dai, Y. Chen, Y. Li, and X. Hu (2021). Environ. Res. 194, 110496. https://doi.org/10.1016/j.envres.2020.110496.

    Article  CAS  PubMed  Google Scholar 

  26. K. Tian, L. Hu, L. Li, Q. Zheng, Y. Xin, and G. Zhang (2022). Chin Chem Lett. 33, 4461. https://doi.org/10.1016/j.cclet.2021.12.042.

    Article  CAS  Google Scholar 

  27. M. Moradi, B. Kakavandi, A. Bahadoran, S. Giannakis, and E. Dehghanifard (2022). Sep. Purif. Technol. 285, 120313. https://doi.org/10.1016/j.seppur.2021.120313.

    Article  CAS  Google Scholar 

  28. G. Elmacı, G. Özgenç, P. Kurz, and B. Zumreoglu−Karan (2020). Sustain. Energy Fuels. 4, 3157. https://doi.org/10.1039/D0SE00301H.

    Article  Google Scholar 

  29. Y. Wang, S. Indrawirawan, X. Duan, H. Sun, H. M. Ang, M. O. Tadé, and S. Wang (2015). J. Chem. Eng. 266, 12. https://doi.org/10.1016/j.cej.2014.12.066.

    Article  CAS  Google Scholar 

  30. Y. Zhang, Y. Yang, Y. Zhang, T. Zhang, and M. Ye (2012). Appl. Catal. B: Environ. 127, 182. https://doi.org/10.1016/j.apcatb.2012.08.014.

    Article  CAS  Google Scholar 

  31. A. Khan, H. Wang, Y. Liu, A. Jawad, J. Ifthikar, Z. Liao, and Z. Chen (2018). J. Mater. Chem. A. 6, 1590. https://doi.org/10.1039/C7TA07942G.

    Article  CAS  Google Scholar 

  32. S. L. Suib (2008). Acc. Chem. Res. 41, 479. https://doi.org/10.1021/ar7001667.

    Article  CAS  PubMed  Google Scholar 

  33. Y. Yang, S. Zhang, S. Wang, K. Zhang, H. Wang, J. Huang, and G. Yu (2015). Environ. Sci. Technol. 49, 4473. https://doi.org/10.1021/es505232f.

    Article  CAS  PubMed  Google Scholar 

  34. S. L. Suib (2008). J. Mater. Chem. 18, 1623. https://doi.org/10.1039/B714966M.

    Article  CAS  Google Scholar 

  35. Y. Yang, P. Zhang, K. Hu, X. Duan, Y. Ren, H. Sun, and S. Wang (2021). Appl. Catal. B: Environ. 286, 119903. https://doi.org/10.1016/j.apcatb.2021.119903.

    Article  CAS  Google Scholar 

  36. D. Liu, Q. Li, J. Hou, and H. Zhao (2021). Catal. Sci. Technol. 11, 3715. https://doi.org/10.1039/D1CY00087J.

    Article  CAS  Google Scholar 

  37. Q. Dong, J. Wang, X. Duan, X. Tan, S. Liu, and S. Wang (2019). J. Chem. Eng. 369, 1049. https://doi.org/10.1016/j.cej.2019.03.139.

    Article  CAS  Google Scholar 

  38. X. Meng, J. Zhang, B. Chen, Z. Jing, and P. Zhao (2016). Catal. Sci. Technol. 6, 890. https://doi.org/10.1039/C5CY01433F.

    Article  CAS  Google Scholar 

  39. H. Yin, X. Dai, M. Zhu, F. Li, X. Feng, and F. Liu (2015). J. Hazard. Mater. 296, 221. https://doi.org/10.1016/j.jhazmat.2015.04.055.

    Article  CAS  PubMed  Google Scholar 

  40. S. Adjimi, J. M. García−Vargas, J. A. Díaz, L. Retailleau, S. Gil, M. Pera−Titus, and A. Giroir−Fendler (2017). Appl. Catal. B: Environ. 219, 459. https://doi.org/10.1016/j.apcatb.2017.07.044.

    Article  CAS  Google Scholar 

  41. M. Sun, L. Yu, F. Ye, G. Diao, Q. Yu, Z. Hao, and L. Yuan (2013). J. Chem. Eng. 220, 320. https://doi.org/10.1016/j.cej.2013.01.061.

    Article  CAS  Google Scholar 

  42. R. Jothiramalingam, B. Viswanathan, and T. K. Varadarajan (2005). Catal. Commun. 6, 41. https://doi.org/10.1016/j.catcom.2004.10.008.

    Article  CAS  Google Scholar 

  43. L. Zhang, J. Tu, L. Lyu, and C. Hu (2016). Appl. Catal. B: Environ. 181, 561. https://doi.org/10.1016/j.apcatb.2015.08.029.

    Article  CAS  Google Scholar 

  44. J. Li, P. Ye, J. Fang, M. Wang, D. Wu, A. Xu, and X. Li (2017). Appl. Surf. Sci. 422, 754. https://doi.org/10.1016/j.apsusc.2017.06.118.

    Article  CAS  Google Scholar 

  45. P. Ye, D. Wu, M. Wang, Y. Wei, A. Xu, and X. Li (2018). Appl. Surf. Sci. 428, 131. https://doi.org/10.1016/j.apsusc.2017.09.107.

    Article  CAS  Google Scholar 

  46. N. N. Opembe, C. K. King’ondu, and S. L. Suib (2012). Catal. Lett. 142, 427. https://doi.org/10.1007/s10562−012−0779−3.

    Article  CAS  Google Scholar 

  47. Y. U. Lin, S. U. N. Ming, Y. U. Jian, Y. U. Qian, H. A. O. Zhifeng, and L. I. Chaosheng (2008). Chinese. Chinese J. Catal. 29, 1127. https://doi.org/10.1016/S1872-2067(09)60013-9.

    Article  Google Scholar 

  48. Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, and M. Aindow (2005). Chem. Mater. 17, 5382. https://doi.org/10.1021/cm051294w.

    Article  CAS  Google Scholar 

  49. P. Stelmachowski, P. Legutko, T. Jakubek, and A. Kotarba (2018). J. Alloys Compd. 767, 592. https://doi.org/10.1016/j.jallcom.2018.07.147.

    Article  CAS  Google Scholar 

  50. P. Legutko, M. Fedyna, J. Gryboś, X. Yu, Z. Zhao, A. Adamski, and Z. Sojka (2022). Fuel 328, 125325. https://doi.org/10.1016/j.fuel.2022.125325.

    Article  CAS  Google Scholar 

  51. C. Yang, M. Zhou, and Q. Xu (2013). Phys. Chem. Chem. Phys. 15, 19730. https://doi.org/10.1039/C3CP53504E.

    Article  CAS  PubMed  Google Scholar 

  52. T. P. Rao, A. Kumar, V. M. Naik, and R. Naik (2019). J. Alloys Compd. 789, 518. https://doi.org/10.1016/j.jallcom.2019.03.011.

    Article  CAS  Google Scholar 

  53. S. Tsunekawa, K. Asami, S. Ito, M. Yashima, and T. Sugimoto (2005). Appl. Surf. Sci. 252, 1651. https://doi.org/10.1016/j.apsusc.2005.03.183.

    Article  CAS  Google Scholar 

  54. Y. Yang, Y. Li, M. Mao, M. Zeng, and X. Zhao (2017). ACS Appl Mater Interfaces. 9, 2350. https://doi.org/10.1021/acsami.6b12819.

    Article  CAS  PubMed  Google Scholar 

  55. Z. Jiang, Y. Ma, Y. Li, and H. Liu (2019). Appl. Surf. Sci. 483, 827. https://doi.org/10.1016/j.apsusc.2019.04.022.

    Article  CAS  Google Scholar 

  56. J. Liu, L. Ke, L. Sun, F. Pan, X. Yuan, and D. Xia (2021). J. Environ. Chem. Eng. 9, 106199. https://doi.org/10.1016/j.jece.2021.106199.

    Article  CAS  Google Scholar 

  57. F. Hasanvandian, A. Shokri, M. Moradi, B. Kakavandi, and S. R. Setayesh (2022). J. Hazard. Mater. 423, 127090. https://doi.org/10.1016/j.jhazmat.2021.127090.

    Article  CAS  PubMed  Google Scholar 

  58. L. Chen, D. Ding, C. Liu, H. Cai, Y. Qu, S. Yang, and T. Cai (2018). J. Chem. Eng. 334, 273. https://doi.org/10.1016/j.cej.2017.10.040.

    Article  CAS  Google Scholar 

  59. S. Liu, Y. Liu, M. Chen, L. Li, W. Tu, and Z. Huang (2022). J. Chem. Eng. 433, 133516. https://doi.org/10.1016/j.cej.2021.133516.

    Article  CAS  Google Scholar 

  60. B. Liu, W. Song, W. Zhang, X. Zhang, S. Pan, H. Wu, and Y. Xu (2021). Sep. Purif. Technol. 273, 118705. https://doi.org/10.1016/j.seppur.2021.118705.

    Article  CAS  Google Scholar 

  61. F. Qi, W. Chu, and B. Xu (2014). J. Chem. Eng. 235, 10. https://doi.org/10.1016/j.cej.2013.08.113.

    Article  CAS  Google Scholar 

  62. L. Hu, G. Zhang, M. Liu, Q. Wang, and P. Wang (2018). J. Chem. Eng. 338, 300. https://doi.org/10.1016/j.cej.2018.01.016.

    Article  CAS  Google Scholar 

  63. X. Ao, W. Liu, W. Sun, M. Cai, Z. Ye, C. Yang, and C. Li (2018). J. Chem. Eng. 345, 87. https://doi.org/10.1016/j.cej.2018.03.133.

    Article  CAS  Google Scholar 

  64. P. Neta, R. E. Huie, and A. B. Ross (1988). J Phys Chem Ref Data 17, 1027. https://doi.org/10.1063/1.555808.

    Article  CAS  Google Scholar 

  65. J. Li, M. Xu, G. Yao, and B. Lai (2018). J. Chem. Eng 348, 1012. https://doi.org/10.1016/j.cej.2018.05.032.

    Article  CAS  Google Scholar 

  66. X. Wu, W. Zhao, Y. Huang, and G. Zhang (2020). J. Chem. Eng. 381, 122768. https://doi.org/10.1016/j.cej.2019.122768.

    Article  CAS  Google Scholar 

  67. S. Tang, M. Zhao, D. Yuan, X. Li, Z. Wang, X. Zhang, and J. Ke (2021). Chemosphere. 268, 129315. https://doi.org/10.1016/j.chemosphere.2020.129315.

    Article  CAS  PubMed  Google Scholar 

  68. X. Qiu, S. Yang, M. Dzakpasu, X. Li, D. Ding, P. Jin, and X. C. Wang (2019). J. Chem. Eng. 372, 605. https://doi.org/10.1016/j.cej.2019.04.175.

    Article  CAS  Google Scholar 

  69. Y. F. Huang and Y. H. Huang (2009). J. Hazard. Mater. 167, 418. https://doi.org/10.1016/j.jhazmat.2008.12.138.

    Article  CAS  PubMed  Google Scholar 

  70. Z. Huang, T. Wang, M. Shen, Z. Huang, Y. Chong, and L. Cui (2019). J. Chem. Eng. 369, 784. https://doi.org/10.1016/j.cej.2019.03.136.

    Article  CAS  Google Scholar 

  71. M. K. Trivedi, A. Branton, D. Trivedi, G. Nayak, K. Bairwa, and S. Jana (2015). Pharm. Anal. Acta. 6, 19.

    Google Scholar 

  72. C. Fang, Y. Huang, Y. Wang, X. Meng, X. Wang, and X. Liu (2022). JWPE. 50, 103284. https://doi.org/10.1016/j.jwpe.2022.103284.

    Article  Google Scholar 

  73. Z. Liu, Z. Gao, and Q. Wu (2021). J. Chem. Eng. 423, 130283. https://doi.org/10.1016/j.cej.2021.130283.

    Article  CAS  Google Scholar 

  74. S. Luo, L. Duan, B. Sun, M. Wei, X. Li, and A. Xu (2015). Appl. Catal. B: Environ. 164, 92. https://doi.org/10.1016/j.apcatb.2014.09.008.

    Article  CAS  Google Scholar 

  75. C. Jin, M. Wang, Z. Li, J. Kang, Y. Zhao, J. Han, and Z. Wu (2020). J. Chem. Eng. 398, 125569. https://doi.org/10.1016/j.cej.2020.125569.

    Article  CAS  Google Scholar 

  76. J. Ma, J. Zou, L. Li, C. Yao, T. Zhang, and D. Li (2013). Appl. Catal. B: Environ. 134, 1. https://doi.org/10.1016/j.apcatb.2012.12.032.

    Article  CAS  Google Scholar 

  77. B. Zhu, H. Cheng, Y. Qin, J. Ma, Y. Kong, and S. Komarneni (2020). Sep. Purif. Technol. 233, 116057. https://doi.org/10.1016/j.seppur.2019.116057.

    Article  CAS  Google Scholar 

  78. H. Zhang, X. Wang, X. Zhao, Y. Dong, W. Wang, and L. Wang (2022). JWPE. 49, 103110. https://doi.org/10.1016/j.jwpe.2022.103110.

    Article  Google Scholar 

  79. R. Xu, J. Xiong, D. Liu, Y. Wang, and Y. A. Ming (2022). J. Colloid Interface Sci. 625, 397. https://doi.org/10.1016/j.jcis.2022.06.025.

    Article  CAS  PubMed  Google Scholar 

  80. W. Zhang, S. Feng, J. Ma, F. Zhu, and S. Komarneni (2022). Environ. Sci. Pollut. Res. 29, 67003. https://doi.org/10.1007/s11356−022−20500−x.

    Article  CAS  Google Scholar 

  81. G. Lv, T. Wang, X. Zou, J. Shen, J. Wang, Y. Chen, and X. Zhang (2022). Colloids Surf. A: Physicochem. Eng. 655, 130250. https://doi.org/10.1016/j.colsurfa.2022.130250.

    Article  CAS  Google Scholar 

  82. H. Huang, T. Guo, K. Wang, Y. Li, and G. Zhang (2021). Sci. Total Environ. 758, 143957. https://doi.org/10.1016/j.scitotenv.2020.143957.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the research council of the University of Guilan for partial support of this study.

Funding

The authors received no funds.

Author information

Authors and Affiliations

Authors

Contributions

AK defined and conducted the project. Data analysis and editing of the manuscript was performed by him. FMK performed the experiments, optimized the laboratory procedures, and prepared the manuscript draft.

Corresponding author

Correspondence to Alireza Khorshidi.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalimani, F.M., Khorshidi, A. Zr−Doped OMS−2 Nano−rods as Efficient Catalysts for Degradation of Tetracycline via Peroxydisulfate Activation. J Clust Sci 35, 1091–1103 (2024). https://doi.org/10.1007/s10876-023-02530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02530-8

Keywords

Navigation