Skip to main content
Log in

Effect of deposition time on the optical properties of vanadium pentoxide films grown on porous silicon nanostructure

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Vanadium pentoxide (V2O5) thin films were grown on porous silicon (PS) layer by electron beam evaporation technique under an oxygen partial pressure. The morphology of the porous surface before and after V2O5 deposition for different evaporation times was observed by the Scanning Electron Microscope (SEM). The predicts changes of the chemical composition and bonds at the porous surface have been studied by FTIR and Raman spectroscopies. Photoluminescence (PL) spectroscopy was carried out to study the effect of vanadium pentoxide thickness on the optical properties of V2O5/PS nanocomposites. The PL spectrum of PS show a red-shift of 90 nm following the deposition of vanadium pentoxide while a quenching of the PL intensity was observed. Referring to FTIR and Raman results, the origin of this shift can be attributed to the formation of oxidized vanadium elements at PS surface as well as the creation of localized states by V2O5 molecules inside the band gap of PS. The wavelength dependence of optical transmittance, reflectance and absorption coefficients were investigated. An increase in the optical band gap from 1.95 to 2.18 eV was obtained due to Moss-Burstein effect as well as the presence of vacancy defects in V2O5 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abdel Maksoud MIA, Fahim RA, Kassem SM, Awed AS (2023) Gamma irradiation-induced changes in structural, linear/nonlinear optical, and optoelectrical properties of PVB/BiVO4 nanocomposite for organic electronic devices. Opt Quant Electron 55:1165

    Article  CAS  Google Scholar 

  • Amdouni S, Rahmani M, Zaïbi M-A, Oueslati M (2015) Enhancement of Porous Silicon Photoluminescence by Electroless Deposition of Nickel 157:93–97

    CAS  Google Scholar 

  • Arshavsky-Graham S, Massad-Ivanir N, Segal E, Weiss S (2019) Porous silicon-based photonic biosensors: current status and emerging applications. Anal Chem 91:441–467

    Article  PubMed  CAS  Google Scholar 

  • Baddour-Hadjean R, Pereira-Ramos J-P (2009) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319

    Article  Google Scholar 

  • R.T. Bento, O.V. Correa, P.L. Gastelois & M.F. Pillis, VIS-active TiO2 films decorated by expanded graphite: impact of the exfoliation time on the photocatalytic behaviour, Environmental Technology 2023, 1–12

  • Bessaïs B, Ben Younes O, Ezzaouia H, Mliki N, Boujmil MF, Oueslati M, Bennaceur R (2000) Morphological changes in porous silicon nanostructures: non-conventional photoluminescence shifts and correlation with optical absorption. J Luminescen 90:101–109

    Article  Google Scholar 

  • Bisi O (2000) Stefano Ossicini, L. Pavesi, Porous Silicon: a Quantum Sponge Structure for Silicon Based Optoelectronics, Surface Science Reports 38:1–126

    CAS  Google Scholar 

  • Brown DA, Glass WK, McGardle S (1989) Spectroscopic studies of vanadium complexes of benzohydroxamic acid. Proc R Irish Acad Sect b: Biol Geol Chem Sci 89:383–387

    Google Scholar 

  • Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    Article  CAS  Google Scholar 

  • S. R. Chalana, V. Ganesan, and V. P. Mahadevan Pillai, Surface plasmon resonance in nanostructured Ag incorporated ZnS films, AIP Advances 2015, 5 ,107207.

  • Chebout K, Iratni A, Bouremana A, Sam S, Keffous A, Gabouze N (2013) Electrical characterization of ethanol sensing device based on Vanadium oxide/Porous Si/Si structure. Solid State Ionics 253:164–168

    Article  CAS  Google Scholar 

  • Chu J, Kong Z, Lu D, Zhang W, Wang X, Yu Y, Li S, Wang X, Xiong S, Ma J (2016) Hydrothermal synthesis of vanadium oxide nanorods and their electrochromic performance. Mater Lett 166:179–182

    Article  CAS  Google Scholar 

  • Costa C, Pinheiro C, Henriques I, Laia CAT (2012) Inkjet printing of sol–gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl Mater Interfaces 4:5266–5275

    Article  PubMed  CAS  Google Scholar 

  • Das AS, Roy M, Roy D, Kar T, Rath S, Bhattacharya S (2017) Investigations of Microstructure and Dc Conductivity of V2O5-Nd2O3 Glass Nanocomposites. ChemistrySelect 2:11273–11280

    Article  CAS  Google Scholar 

  • M. Dutta, J.M. Kalita, G. Wary, Optical processes and apparent increase of optical band gap in Y2O3:Eu2+ nanoparticles synthesised by a gradually-heated solution combustion method 2021, 240, 166946.

  • Escobar S, Nava R, Flores-Romero E, Reyes-Esqueda JA (2018) Light polarization in active photonic waveguides of porous silicon. Photon Nanostruct Fundam Appl 31:44–51

    Article  Google Scholar 

  • Frechero MA, Quinzani OV, Pettigrosso RS, Villar M, Montani RA (2007) IR absorption spectra of lithium and silver vanadium–tellurite based glasses. J Non-Cryst Solids 353:2919–2925

    Article  CAS  Google Scholar 

  • Frost RL, Erickson KL, Weier ML, Carmody O (2005) Raman and infrared spectroscopy of selected vanadates. Spectrochimica Acta Part A 61:829–834

    Article  Google Scholar 

  • D. Govindarajan, V. Uma Shankar, R. Gopalakrishnan, Supercapacitor behavior and characterization of RGO anchored V2O5 nanorods, Journal of Materials Science: Materials in Electronics 2019, 30, 16142–16155.

  • Jerbi L, Rahmani M, Ajlani H, Guendouz M, Lorrain N, Oueslati M, Meftah A (2022) Highly improved optical properties of silicon nanowires by deposition of Poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene] polymer. J Lumin 244:118744

    Article  CAS  Google Scholar 

  • Jin A, Chen W, Zhu Q, Yang Y, Volkov VL, Zakharova GS (2008) Electrical and electrochemical characterization of poly (ethylene oxide)/V2O5 xerogel electrochromic films. Solid State Ionics 179:1256–1262

    Article  CAS  Google Scholar 

  • Jin A, Chen W, Zhu Q, Yang Y, Volkov VL, Zakharova GS (2009) Structural and electrochromic properties of molybdenum doped vanadium pentoxide thin films by sol–gel and hydrothermal synthesis. Thin Solid Films 517:2023–2028

    Article  CAS  Google Scholar 

  • Jin W, Chen W, Lu Y, Zhao C, Dai Y (2011) V2O5/polypyrrole core-shell nanotubes for gas sensor. J Nanosci Nanotechnol 11:10834–10838

    Article  PubMed  CAS  Google Scholar 

  • Julien C, Haro-Poniatowski E, Camacho-López MA, Escobar-Alarcón L, J. Jı́menez-Jarquı́n, (1999) Growth of V2O5 thin films by pulsed laser deposition and their applications in lithium microbatteries. Mater Sci Eng, B 65:170–176

    Article  Google Scholar 

  • Kang M, Oh E, Kim I, Kim SW, Ryu J-W, Kim Y-G (2012) Optical characteristics ofamorphous V2O5 thin films colored by an excimer laser. Curr Appl Phys 12:489–493

    Article  Google Scholar 

  • Khairy KT, Song Y, Yoon J-H, Montero J, Österlund L, Kim S, Song P (2023) Thermochromic properties of vanadium oxide thin films prepared by reactive magnetron sputtering at different oxygen concentrations. Vacuum 210:111887

    Article  CAS  Google Scholar 

  • Ktifa S, Rahmani M (2023) Strong enhancement of the optical properties of SiNWs by the deposition of snowball-like V2O5 nanoparticles. Opt Mater 142:114144

    Article  CAS  Google Scholar 

  • Ktifa S, Znaidi M, Saadallah F, Yacoubi N, Ezzaouia H (2018) Photothermal investigation of nanocomposite porous silicon / Rhodamine 6G. SILICON 10:1573–1577

    Article  CAS  Google Scholar 

  • Lamsal C, Ravindra NM (2013) Optical properties of vanadium oxides-an analysis. J Mater Sci 48:634

    Article  Google Scholar 

  • Lee W-J, Chang Y-H (2018) Growth without Postannealing of Monoclinic VO2 Thin Film by Atomic Layer Deposition Using VCl4 as Precursor. Coatings 8:431

    Article  Google Scholar 

  • Mabrouk A, Lorrain N, Haji LM, Oueslati M (2015) Correlation between optical properties surface morphology of porous silicon electrodeposited by Fe3+ ion. Superlatt Microstruct 77:219–231

    Article  CAS  Google Scholar 

  • Mane AA, Ganbavle VV, Gaikwad MA, Nikam SS, Rajpure KY, Moholkar AV (2015) Physicochemical properties of sprayed V2O5 thin films: Effect of substrate temperature. J Anal Appl Pyrolysis 115:57–65

    Article  CAS  Google Scholar 

  • Mäntele W, Deniz E (2017) UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim Acta Part A Mol Biomol Spectrosc 173:965–968

    Article  Google Scholar 

  • S.J.P. McInnes, R.B. Vasani, N.K. McMillan, N.H. Voelcker, Chapter 14 - Porous silicon-polymer composites for cell culture and tissue engineering, Porous Silicon for Biomedical Applications (Second Edition) Woodhead Publishing Series in Biomaterials 2021, 447–492.

  • Meng L-J, Silva RA, Cui H-N, Teixeira V, Dos Santos M, Xu Z (2006) Optical and structural properties of vanadium pentoxide films prepared by dc reactivemagnetron sputtering. Thin Solid Films 515:195–200

    Article  CAS  Google Scholar 

  • Moisii C, Curran MD, van de Burgt LJ, Stiegman AE (2005) Raman spectroscopy of discrete silica supported vanadium oxide: assignment of fundamental stretching modes. J Mater Chem 15:3519–3524

    Article  CAS  Google Scholar 

  • Mu J, Wang J, Hao J, Cao P, Zhao S, Zeng W, Miao B, Xu S (2015) Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions. Ceram Int 41:12626–12632

    Article  CAS  Google Scholar 

  • Nandakumar NK, Seebauver EG (2011) Low temperature chemical vapor deposition of nanocrystalline V2O5 thin films. Thin Solid Films 519:3663–3668

    Article  CAS  Google Scholar 

  • Oktiani R, Ragadhita R, Nandiyanto ABD (2019) How to read and interpret FTIR spectroscope of organic material. Indonesian J Sci Technol 4:97–118

    Article  Google Scholar 

  • Rahmani M, Moadhen A, Zaïbi M-A, Elhouichet H, Oueslati M (2008) Photoluminescence enhancement and stabilisation of porous silicon passivated by iron. J Lumin 128:1763–1766

    Article  CAS  Google Scholar 

  • Rahmani M, Amdouni S, Zaïbi MA, Meftah A (2021a) Temperature and Excitation Power Dependence of Photoluminescence and Electrical Characterization of Ni-Passivated Porous Silicon Journal of Materials Science: Materials in Electronic 32:4321–4330

    CAS  Google Scholar 

  • Rahmani M, Amdouni S, Zaïbi MA, Meftah A (2021b) Effect of etching duration on the morphological and opto-electrical properties of silicon nanowires obtained by Ag-assisted chemical etching. SILICON 13:179–187

    Article  CAS  Google Scholar 

  • Ramana CV, Hussain OM, Naidu BS, Reddy PR (1997) Spectroscopic characterization of electron-beam evaporated V2O5 thin films. Thin Solid Films 305:219–226

    Article  CAS  Google Scholar 

  • Rotshteyn VM, Turdaliev TK, Ashurov KhB (2021) On the question of the possibility of using nanocrystalline porous silicon in silicon-based solar cells. Appl Solar Energy 57:480–485

    Article  Google Scholar 

  • Schneider K (2020) Optical properties and electronic structure of V2O5, V2O3 and VO2. J Mater Sci: Mater Electron 1:10478–10488

    Google Scholar 

  • Schneider K, Maziarz W2O5 Thin Films as Nitrogen Dioxide Sensors Proceedings 2018, 2, 759.

  • Shafique S, Yang S, Wang Y, Woldu YT, Cheng B, Ji P (2019) High-performance photodetector using urchin-like hollow spheres of vanadium pentoxide network device. Sensors Actuators A 296:38–44

    Article  CAS  Google Scholar 

  • Sharmila B (2023) Ashutosh Kumar Dikshit, Priyanka Dwivedi, Role of etching parameters on the performance of porous silicon based photodetector devices. Microelectron J 140:105940

    Article  Google Scholar 

  • Shvets P, Dikaya O, Maksimova K, Goikhman A (2019) A review of Raman spectroscopy of vanadium oxides. J Raman Spectrosc 50:1226–1244

    Article  CAS  Google Scholar 

  • Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous Germanium. Physica Status Solidi (b) 15:627–637

    Article  CAS  Google Scholar 

  • Tieu T, Alba M, Elnathan R, Cifuentes-Rius A, Voelcker NH (2019) Advances in porous silicon–based nanomaterials for diagnostic and therapeutic applications. Adv Ther 2:1800095

    Article  Google Scholar 

  • Viswanathan A, Prakashaiah BG, Subburaj V, Shetty AN (2019) High energy reduced graphene oxide/vanadium Pentoxide/polyaniline hybrid supercapacitor for power backup and switched capacitor converters. J Colloid Interface Sci 545:82–93

    Article  PubMed  CAS  Google Scholar 

  • Wang C-C, Chen K-C, Shieu F-S, Shih HC (2019) Characterization and photoluminescence of V2O5@Pt core-shell nanostructures as fabricated by atomic layer deposition. Chem Phys Lett 729:24–29

    Article  CAS  Google Scholar 

  • Yan W, Hu M, Wang D, Li C (2015) Room temperature gas sensing properties of porous silicon/V2O5 nanorods composite. Appl Surf Sci 346:216–222

    Article  CAS  Google Scholar 

  • Yu M, Liu X, Wang Y, Zheng Y, Zhang J, Li M, Lan W, Su Q (2012) Gas sensing properties of p-type semiconducting vanadium oxide nanotubes. Appl Surf Sci 258:9554–9558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Jamila Bennaceur and Pr. Wissem Dimassi (Laboratoire de photovoltaïque et de semi-conducteurs, centre de recherche et de technologie de l’énergie, Hammam Lif— Tunisia) for FTIR measurements.

Author information

Authors and Affiliations

Authors

Contributions

SK: Investigation, Data curation, Formal analysis, Writing– original draft. MR: Methodology, Validation, Writing – review & editing. MB: Supervision.

Corresponding author

Correspondence to Skander Ktifa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ktifa, S., Rahmani, M. & Bouaicha, M. Effect of deposition time on the optical properties of vanadium pentoxide films grown on porous silicon nanostructure. Braz. J. Chem. Eng. (2024). https://doi.org/10.1007/s43153-023-00430-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43153-023-00430-y

Keywords

Navigation