Skip to main content
Log in

Role of Subgradients in Variational Analysis of Polyhedral Functions

  • Original Paper
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Understanding the role that subgradients play in various second-order variational analysis constructions can help us uncover new properties of important classes of functions in variational analysis. Focusing mainly on the behavior of the second subderivative and subgradient proto-derivative of polyhedral functions, i.e., functions with polyhedral convex epigraphs, we demonstrate that choosing the underlying subgradient, utilized in the definitions of these concepts, from the relative interior of the subdifferential of polyhedral functions ensures stronger second-order variational properties such as strict twice epi-differentiability and strict subgradient proto-differentiability. This allows us to characterize continuous differentiability of the proximal mapping and twice continuous differentiability of the Moreau envelope of polyhedral functions. We close the paper with proving the equivalence of metric regularity and strong metric regularity of a class of generalized equations at their nondegenerate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benko, M., Mehlitz, P.: Why second-order sufficient conditions are, in a way, easy—or—revisiting calculus for second subderivatives. J. Convex Anal. 30(2), 541–589 (2023)

    MathSciNet  Google Scholar 

  2. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  3. Dontchev, A.L., Rockafellar, R.T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6(4), 1087–1105 (1996)

    Article  MathSciNet  Google Scholar 

  4. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer, New York (2014)

    Book  Google Scholar 

  5. Facchinei, F., Pang, J.-S.: Finite-Dimesional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  6. Hang, N.T.V., Sarabi, M.E.: Local convergence analysis of augmented Lagrangian methods for piecewise linear-quadratic composite optimization problems. SIAM J. Optim. 31(4), 2665–2694 (2021)

    Article  MathSciNet  Google Scholar 

  7. Hiriart-Urruty, J.-B.: At what points is the projection mapping differentiable? Am. Math. Mon. 89(7), 456–458 (1982)

    Article  MathSciNet  Google Scholar 

  8. Holmes, R.B.: Smoothness of certain metric projections on Hilbert space. Trans. Am. Math. Soc. 183, 87–100 (1973)

    Article  MathSciNet  Google Scholar 

  9. Ioffe, A.D.: Variational Analysis of Regular Mappings: Theory and Applications. Springer, Cham (2017)

    Book  Google Scholar 

  10. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program. 46, 105–122 (1990)

    Article  MathSciNet  Google Scholar 

  11. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Springer, New York (2002)

    Google Scholar 

  12. Lemaréchal, C., Oustry, F., Sagastizábal, C.: The \(\cal{U} \)-Lagrangian of a convex function. Trans. Am. Math. Soc. 352(2), 711–729 (2000)

    Article  MathSciNet  Google Scholar 

  13. Lemaréchal, C., Sagastizábal, C.: An approach to variable metric bundle methods. In: Henry, J., Yvon, J.P. (Eds.) Systems Modeling and Optimization. Lecture Notes Control and Information Science, vol. 197, pp. 144–162. Springer, London (1994)

  14. Lewis, A.S.: Active sets, nonsmoothness and sensitivity. SIAM J. Optim. 13(3), 702–725 (2002)

    Article  MathSciNet  Google Scholar 

  15. Mifflin, R.: A quasi-second-order proximal bundle algorithm. Math. Program. 73(1), 51–72 (1996)

    Article  MathSciNet  Google Scholar 

  16. Mohammadi, A., Mordukhovich, B.S., Sarabi, M.E.: Parabolic regularity via geometric variational analysis. Trans. Am. Soc. 374(3), 1711–1763 (2021)

    Article  Google Scholar 

  17. Mohammadi, A., Sarabi, M.E.: Twice epi-differentiability of extended-real-valued functions with applications in composite optimization. SIAM J. Optim. 30(3), 2379–2409 (2020)

    Article  MathSciNet  Google Scholar 

  18. Mordukhovich, B.S., Sarabi, M.E.: Generalized differentiation of piecewise linear functions in second-order variational analysis. Nonlinear Anal. 132, 240–273 (2016)

    Article  MathSciNet  Google Scholar 

  19. Mordukhovich, B.S., Sarabi, M.E.: Critical multipliers in variational systems via second-order generalized differentiation. Math. Program. 169, 605–648 (2018)

    Article  MathSciNet  Google Scholar 

  20. Poliquin, R.A., Rockafellar, R.T.: Second-order nonsmooth analysis in nonlinear programming. In: Du, D., Qi, L., Womersley, R. (Eds.) Recent Advances in Optimization. World Scientific Publishers, pp. 322–350 (1995)

  21. Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348(5), 1805–1838 (1996)

    Article  MathSciNet  Google Scholar 

  22. Poliquin, R.A., Rockafellar, R.T.: Generalized Hessian properties of regularized nonsmooth functions. SIAM J. Optim. 6(4), 1121–1137 (1996)

    Article  MathSciNet  Google Scholar 

  23. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5(1), 43–62 (1980)

    Article  MathSciNet  Google Scholar 

  24. Robinson, S.M.: Local structure of feasible sets in nonlinear programming. Part II: Nondegeneracy. Math. Program. Study 22, 217–230 (1984)

    Article  Google Scholar 

  25. Robinson, S.M.: An implicit-function theorem for a class of nonsmooth functions. Math. Oper. Res. 16(2), 292–309 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  26. Rockafellar, R.T.: Convex Ananlysis. Priceton University Press, Princeton (1970)

    Book  Google Scholar 

  27. Rockafellar, R.T.: Maximal monotone relations and the second derivatives of nonsmooth functions. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(3), 167–184 (1985)

  28. Rockafellar, R.T.: First- and second-order epi-differentiability in nonlinear programming. Trans. Am. Math. Soc. 307(1), 75–108 (1988)

    Article  MathSciNet  Google Scholar 

  29. Rockafellar, R.T.: Generalized second derivatives of convex functions and saddle functions. Trans. Am. Math. Soc. 322(1), 51–77 (1990)

    Article  MathSciNet  Google Scholar 

  30. Rockafellar, R.T.: Augmented Lagrangians and hidden convexity in sufficient conditions for local optimality. Math. Program. 198, 159–194 (2022)

    Article  MathSciNet  Google Scholar 

  31. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  32. Shapiro, A.: On a class of nonsmooth composite functions. Math. Oper. Res. 28(4), 677–692 (2003)

    Article  MathSciNet  Google Scholar 

  33. Sarabi, M.E.: Primal superlinear convergence of SQP methods for piecewise linear-quadratic composite optimization problems. Set-Valued Var. Anal. 30, 1–37 (2022)

    Article  MathSciNet  Google Scholar 

  34. Stella, L., Themelis, A., Patrinos, P.: Forward–backward quasi-Newton methods for nonsmooth optimization problems. Comput. Optim. Appl. 67, 443–487 (2017)

    Article  MathSciNet  Google Scholar 

  35. Themelis, A., Stella, L., Patrinos, P.: Forward–backward envelope for the sum of two nonconvex functions: further properties and nonmonotone linesearch algorithms. SIAM J. Optim. 28(3), 2274–2303 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Vietnam Institute for Advanced Study in Mathematics for hospitality during her postdoctoral fellowship of the Institute in 2021–2022. Research of the first author is partially supported by Vietnam Academy of Science and Technology under grant CTTH00.01/22-23. Research of the third author is partially supported by the U.S. National Science Foundation under the Grant DMS 2108546.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Sarabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by René Henrion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, N.T.V., Jung, W. & Sarabi, E. Role of Subgradients in Variational Analysis of Polyhedral Functions. J Optim Theory Appl 200, 1160–1192 (2024). https://doi.org/10.1007/s10957-024-02378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-024-02378-6

Keywords

Mathematics Subject Classification

Navigation