Skip to main content
Log in

Using the Experimental Cross-Association Energy and Artificial Neural Network for Modeling the Phase Equilibrium of Carbon Dioxide–Water System: What Advances Can Be Achieved?

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, first, the phase equilibrium of the CO2/water system has been conducted by using two equations of state, including Two-State and perturbed chain statistical association fluid theory equations of state. The experimental value of cross-association energy (exists in the previous studies) is used for this study to model the equilibrium composition CO2 in the aqueous phase. Two strategies are applied to carbon dioxide. In the first strategy, carbon dioxide can only have cross-association with water, so it has no self-association. The second strategy considers CO2 as both self and cross-associating fluid. Also, an additional equation is used for the cross-association section which reduces the number of adjustable parameters. The results of this study show that the first strategy is successful for all cases, and it is accurate while the second strategy is unsuccessful for Two-State equation of state. Moreover, the application of the first strategy and experimental cross-association energy makes the model independent of simplicity of the model and number of adjustable parameters. Then with the sufficient amount of datasets, machine learning techniques were applied to predict the solubility of CO2 in the water with high accuracy. The results are in good agreement with the experimental data with the correlation coefficient (R) of 0.999 and mean-square root of 4.45e−6 for multilayer perceptron network, which means that the network can predict the solubility for the wide range of temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\tilde{a}\) :

Reduced Helmholtz energy

A :

Helmholtz energy

a :

Parameter in the energy term

AAD:

Average absolute deviation

b :

Co-volume parameter

d :

Temperature-dependent segment diameter

D ij :

Universal constants

E ij :

Association energy

EoS:

Equation of state

\(g\) :

Radial distribution function

k :

Boltzmann constant

k ij :

Binary interaction parameter

m :

Number of segments per chain

\(\overline{m }\) :

Mean segment number per molecule

M :

Number of association sites per molecule

N :

Number of molecules

n :

Number of moles

N A :

Avogadro’s constant

N C :

Number of compounds

N P :

Number of data

R :

Iideal gas constant [8.3145 J·(mol·K)−1]

PC-SAFT:

Perturbed chain statistical associating fluid theory

SRK:

Soave–Redlich–Kwong

T r :

Reduced temperature

x,y :

Mole fraction

VLE:

Vapor–liquid equilibrium

X A :

Mole fraction of molecules NOT bonded at site A

Z :

Compressibility factor

\(\Delta^{AB}\) :

Association strength

\(\varepsilon^{AB}\) :

Association energy

\(\in\) :

(Energy parameter) depth of the dispersion potential [J]

\(\eta\) :

Packing fraction, reduced segment density

\(\rho\) :

Mole density

\(\kappa^{AB}\) :

Volume of association

\(\sigma\) :

Segment diameter [\(^\circ A\)] (temperature-independent)

\(\zeta\) :

Partial volume fraction

\(\upsilon_{ij}\) :

Association volume

assoc:

Association

calc:

Calculated

chain:

Chain

disp:

Dispersion

exp:

Experimental

hc:

Hard chain

hs:

Hard sphere

id:

Ideal

sat:

Saturated

seg:

Segment

References

  1. B.H. Park, H.Y. Shin, B.-S. Lee, Effect of Lewis acid-base complexes between CO2 and alkanols on phase behavior at high pressure. J. CO2 Util. 52, 101680 (2021). https://doi.org/10.1016/j.jcou.2021.101680

    Article  CAS  Google Scholar 

  2. N.I. Diamantonis, I.G. Economou, Modeling the phase equilibria of a H2O–CO2 mixture with PC-SAFT and tPC-PSAFT equations of state. Mol. Phys. 110, 1205–1212 (2012). https://doi.org/10.1080/00268976.2012.656721

    Article  ADS  CAS  Google Scholar 

  3. A.T. Zoghi, F. Feyzi, S. Zarrinpashneh, F. Alavi, Solubility of light reservoir gasses in water by the modified Peng-Robinson plus association equation of state using experimental critical properties for pure water. J. Pet. Sci. Eng. 78, 109–118 (2011). https://doi.org/10.1016/j.petrol.2011.05.001

    Article  CAS  Google Scholar 

  4. X.-Q. Bian, W. Xiong, D.T.K. Kasthuriarachchi, Y.-B. Liu, Phase equilibrium modeling for carbon dioxide solubility in aqueous sodium chloride solutions using an association equation of state. Ind. Eng. Chem. Res. 58, 10570–10578 (2019). https://doi.org/10.1021/acs.iecr.9b01736

    Article  CAS  Google Scholar 

  5. I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen, E.H. Stenby, Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. Mixtures with H2S. AIChE J. 56, 2965–2981 (2010). https://doi.org/10.1002/aic.12207

    Article  ADS  CAS  Google Scholar 

  6. I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen, E.H. Stenby, Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: binary mixtures with CO2. Fluid Phase Equilib. 306, 38–56 (2011). https://doi.org/10.1016/j.fluid.2011.02.006

    Article  CAS  Google Scholar 

  7. T. Lafitte, B. Mendiboure, M.M. Pineiro, D. Bessieres, C. Miqueu, Interfacial properties of water/CO2: a comprehensive description through a gradient theory−SAFT-VR Mie approach. J. Phys. Chem. B 114, 11110–11116 (2010). https://doi.org/10.1021/jp103292e

    Article  CAS  PubMed  Google Scholar 

  8. X.-S. Li, J.-M. Liu, D. Fu, Investigation of interfacial tensions for carbon dioxide aqueous solutions by perturbed-chain statistical associating fluid theory combined with density-gradient theory. Ind. Eng. Chem. Res. 47, 8911–8917 (2008). https://doi.org/10.1021/ie800959h

    Article  CAS  Google Scholar 

  9. G.D. Pappa, C. Perakis, I.N. Tsimpanogiannis, E.C. Voutsas, Thermodynamic modeling of the vapor–liquid equilibrium of the CO2/H2O mixture. Fluid Phase Equilib. 284, 56–63 (2009). https://doi.org/10.1016/j.fluid.2009.06.011

    Article  CAS  Google Scholar 

  10. S. Ansari, M. Safaei-Farouji, S. Atashrouz, A. Abedi, A. Hemmati-Sarapardeh, A. Mohaddespour, Prediction of hydrogen solubility in aqueous solutions: comparison of equations of state and advanced machine learning-metaheuristic approaches. Int. J. Hydrogen Energy 47, 37724–37741 (2022). https://doi.org/10.1016/j.ijhydene.2022.08.288

    Article  CAS  Google Scholar 

  11. M.R. Mohammadi, F. Hadavimoghaddam, S. Atashrouz, A. Abedi, A. Hemmati-Sarapardeh, A. Mohaddespour, Modeling hydrogen solubility in alcohols using machine learning models and equations of state. J. Mol. Liq. 346, 117807 (2022). https://doi.org/10.1016/j.molliq.2021.117807

    Article  CAS  Google Scholar 

  12. A. Torres-Carbajal, U. Que-Salinas, P.E. Ramírez-González, Prediction of equations of state of molecular liquids by an artificial neural network. Revista Mexicana de Física 68, 061702–061711 (2022)

    Article  CAS  Google Scholar 

  13. F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier, Thermodynamics-based artificial neural networks for constitutive modeling. J. Mech. Phys. Solids 147, 104277 (2021). https://doi.org/10.1016/j.jmps.2020.104277

    Article  MathSciNet  Google Scholar 

  14. Z. Khoshraftar, A. Ghaemi, Prediction of CO2 solubility in water at high pressure and temperature via deep learning and response surface methodology. Case Stud. Chem. Environ. Eng. 7, 100338 (2023). https://doi.org/10.1016/j.cscee.2023.100338

    Article  CAS  Google Scholar 

  15. C.S. Wui Ng, H. Djema, M. Nait Amar, A.J. Ghahfarokhi, Modeling interfacial tension of the hydrogen-brine system using robust machine learning techniques: implication for underground hydrogen storage. Int. J. Hydrogen Energy 47, 39595–605 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.120

    Article  CAS  Google Scholar 

  16. M.N. Amar, F.M. Alqahtani, H. Djema, K. Ourabah, M. Ghasemi, Predicting the solubility of hydrogen in hydrocarbon fractions: advanced data-driven machine learning approach and equation of state. J. Taiwan Inst. Chem. Eng. 153, 105215 (2023). https://doi.org/10.1016/j.jtice.2023.105215

    Article  CAS  Google Scholar 

  17. M. Mahdaviara, A. Larestani, M.N. Amar, A. Hemmati-Sarapardeh, On the evaluation of permeability of heterogeneous carbonate reservoirs using rigorous data-driven techniques. J. Pet. Sci. Eng. 208, 109685 (2022). https://doi.org/10.1016/j.petrol.2021.109685

    Article  CAS  Google Scholar 

  18. M.N. Amar, H. Ouaer, M.A. Ghriga, Robust smart schemes for modeling carbon dioxide uptake in metal–organic frameworks. Fuel 311, 122545 (2022). https://doi.org/10.1016/j.fuel.2021.122545

    Article  CAS  Google Scholar 

  19. M.N. Amar, A.J. Ghahfarokhi, C.S.W. Ng, Optimization of WAG in real geological field using rigorous soft computing techniques and nature-inspired algorithms. J. Pet. Sci. Eng. 206, 109038 (2021). https://doi.org/10.1016/j.petrol.2021.109038

    Article  CAS  Google Scholar 

  20. M. Medeiros, P. Téllez-Arredondo, Cubic two-state equation of state for associating fluids. Ind. Eng. Chem. Res. 47, 5723–5733 (2008). https://doi.org/10.1021/ie071397j

    Article  CAS  Google Scholar 

  21. C.J. Wormald, C.N. Colling, A.J. Sellars, in ed. by L.H. Hirsch, Proceedings of the International Gas Research Conference (Government Institutes Inc., Rockville, 1983), pp. 1070–1079.

  22. J. Gross, G. Sadowski, Pertubed-chain SAFT: an equation of state based on perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001)

    Article  CAS  Google Scholar 

  23. S.S. Chen, A. Kreglewski, Applications of the augmented van der Waals theory of fluids. I. Pure fluids. Ber. Bunsen-Ges. 81, 1048–1052 (1977). https://doi.org/10.1021/ie0003887

    Article  CAS  Google Scholar 

  24. J.A. Barker, D. Henderson, Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys. 47, 4714–4721 (1967). https://doi.org/10.1063/1.1701689

    Article  ADS  CAS  Google Scholar 

  25. M.L. Michelsen, J.M. Mollerup, Thermodynamic Models, Fundamentals and Computational Aspects (Tie-Line Publications, Holte, 2004)

    Google Scholar 

  26. L.V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms and Applications (Pearson Education India, Delhi, 2006)

    Google Scholar 

  27. E. Adesanya, A. Aladejare, A. Adediran, A. Lawal, M. Illikainen, Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN). Cem. Concr. Compos. 124, 104265 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104265

    Article  CAS  Google Scholar 

  28. A.E. Aladejare, M. Onifade, A.L. Lawal, Application of metaheuristic based artificial neural network and multilinear regression for the prediction of higher heating values of fuels. Int. J. Coal Prep. Util. 42, 1830–1851 (2022). https://doi.org/10.1080/19392699.2020.1768080

    Article  CAS  Google Scholar 

  29. A.H. Fath, F. Madanifar, M. Abbasi, Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum 6, 80–91 (2020). https://doi.org/10.1016/j.petlm.2018.12.002

    Article  Google Scholar 

  30. X. Wei, N. Zou, L. Zeng, Z. Pei, PolyJet 3D printing: predicting color by multilayer perceptron neural network. Ann. 3D Print. Med. 5, 100049 (2022). https://doi.org/10.1016/j.stlm.2022.100049

    Article  Google Scholar 

  31. M.B. King, A. Mubarak, J.D. Kim, T.R. Bott, The mutual solubilities of water with supercritical and liquid carbon dioxide. J. Supercrit. Fluids 5, 296–302 (1992). https://doi.org/10.1016/0896-8446(92)90021-B

    Article  CAS  Google Scholar 

  32. A. Bamberger, G. Sieder, G. Maurer, High-pressure (vapor-liquid) equilibrium in binary mixtures of (carbon dioxide+water or acetic acid) at temperatures from 313 to 353 K. J. Supercrit. Fluids 17, 97–110 (2000). https://doi.org/10.1016/S0896-8446(99)00054-6

    Article  CAS  Google Scholar 

  33. T. Nakayama, H. Sagara, High pressure liquid-liquid equilibria for the system of water, ethnol, and 1,1-difluoroetane at 323.2 K. Fluid Phase Equilib. 38, 109–127 (1987). https://doi.org/10.1016/0378-3812(87)90007-0

    Article  CAS  Google Scholar 

  34. R. Wiebe, V.L. Gadd, The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. Critical phenomena. J. Am. Chem. Soc. 62, 815–817 (1940). https://doi.org/10.1021/ja01861a033

    Article  CAS  Google Scholar 

  35. S. Takenouchi, G.C. Kennedy, The binary system of H2O-CO2 at high temperature and pressures. Am. J. Sci. 262, 1055–1074 (1964). https://doi.org/10.2475/ajs.262.9.1055

    Article  ADS  CAS  Google Scholar 

  36. A. Valtz, A. Chapoy, C. Coquelet, P. Paricaud, D. Richon, Vapour–liquid equilibria in the carbon dioxide–water system, measurement and modelling from 278.2 to 318.2 K. Fluid Phase Equilib. 226, 333–344 (2004). https://doi.org/10.1016/j.fluid.2004.10.013

    Article  CAS  Google Scholar 

  37. Y.-X. Yu, J. Wu, A fundamental-measure theory for inhomogeneous associating fluids. J. Chem. Phys. 116, 7094–7103 (2002). https://doi.org/10.1063/1.1463435

    Article  ADS  CAS  Google Scholar 

  38. D. Fu, X.-S. Li, Phase equilibria and plate-fluid interfacial tensions for associating hard sphere fluids confined in slit pores. J. Chem. Phys. 125, 084716 (2006). https://doi.org/10.1063/1.2337577

    Article  ADS  CAS  PubMed  Google Scholar 

  39. J. Segura, W.G. Chapman, K.P. Shukla, Associating fluids with four bonding sites against a hard wall: density functional theory. Mol. Phys. 90, 759–771 (1997). https://doi.org/10.1080/002689797172110

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors have no financial or proprietary interests in any material discussed in this article. ZR: methodology, investigation, software, formal analysis, and validation. ED: investigation, software, formal analysis, and validation. SK: methodology, writing original draft, writing—review and editing, supervision. There is no funding for this study.

Corresponding author

Correspondence to Shahin Khosharay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, Z., Davani, E. & Khosharay, S. Using the Experimental Cross-Association Energy and Artificial Neural Network for Modeling the Phase Equilibrium of Carbon Dioxide–Water System: What Advances Can Be Achieved?. Int J Thermophys 45, 24 (2024). https://doi.org/10.1007/s10765-023-03316-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03316-w

Keywords

Navigation