skip to main content
research-article

Map Matching Queries on Realistic Input Graphs Under the Fréchet Distance

Published:13 March 2024Publication History
Skip Abstract Section

Abstract

Map matching is a common preprocessing step for analysing vehicle trajectories. In the theory community, the most popular approach for map matching is to compute a path on the road network that is the most spatially similar to the trajectory, where spatial similarity is measured using the Fréchet distance. A shortcoming of existing map matching algorithms under the Fréchet distance is that every time a trajectory is matched, the entire road network needs to be reprocessed from scratch. An open problem is whether one can preprocess the road network into a data structure, so that map matching queries can be answered in sublinear time.

In this article, we investigate map matching queries under the Fréchet distance. We provide a negative result for geometric planar graphs. We show that, unless SETH fails, there is no data structure that can be constructed in polynomial time that answers map matching queries in O((pq)1-δ) query time for any δ > 0, where p and q are the complexities of the geometric planar graph and the query trajectory, respectively. We provide a positive result for realistic input graphs, which we regard as the main result of this article. We show that for c-packed graphs, one can construct a data structure of \(\tilde{O}(cp)\) size that can answer (1+ε)-approximate map matching queries in \(\tilde{O}(c^4 q \log ^4 p)\) time, where \(\tilde{O}(\cdot)\) hides lower-order factors and dependence on ε.

REFERENCES

  1. [1] Abam Mohammad Ali, Berg Mark de, Farshi Mohammad, and Gudmundsson Joachim. 2009. Region-fault tolerant geometric spanners. Discrete and Computational Geometry 41, 4 (2009), 556582. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Afshani Peyman, Arge Lars, and Larsen Kasper Dalgaard. 2010. Orthogonal range reporting: Query lower bounds, optimal structures in 3-d, and higher-dimensional improvements. In Proceedings of the 26th Symposium on Computational Geometry.Kirkpatrick David G. and Mitchell Joseph S. B. (Eds.), ACM, 240246. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. [3] Afshani Peyman and Driemel Anne. 2018. On the complexity of range searching among curves. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 898917. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Ali Mohamed H., Krumm John, Rautman Travis, and Teredesai Ankur. 2012. ACM SIGSPATIAL GIS cup 2012. In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 597600. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Alt Helmut, Efrat Alon, Rote Günter, and Wenk Carola. 2003. Matching planar maps. Journal of Algorithms 49, 2 (2003), 262283. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. [6] Alt Helmut and Godau Michael. 1995. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry and Applications 5 (1995), 7591. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Baldus Julian and Bringmann Karl. 2017. A fast implementation of near neighbors queries for Fréchet distance (GIS Cup). In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 99:1–99:4. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Brakatsoulas Sotiris, Pfoser Dieter, Salas Randall, and Wenk Carola. 2005. On map-matching vehicle tracking data. In Proceedings of the 31st International Conference on Very Large Data Bases. ACM, 853864. Retrieved from http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Bringmann Karl. 2014. Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH fails. In Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science. IEEE Computer Society, 661670. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Bringmann Karl, Driemel Anne, Nusser André, and Psarros Ioannis. 2022. Tight bounds for approximate near neighbor searching for time series under the Fréchet distance. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms. SIAM, 517550. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Bringmann Karl and Künnemann Marvin. 2017. Improved approximation for Fréchet distance on c-packed curves matching conditional lower bounds. International Journal of Computational Geometry and Applications 27, 1–2 (2017), 85120. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Buchin Kevin, Buchin Maike, Meulemans Wouter, and Mulzer Wolfgang. 2017. Four soviets walk the dog: Improved bounds for computing the Fréchet distance. Discrete and Computational Geometry 58, 1 (2017), 180216. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Buchin Kevin, Diez Yago, Diggelen Tom van, and Meulemans Wouter. 2017. Efficient trajectory queries under the Fréchet distance (GIS Cup). In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 101:1–101:4. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Buchin Kevin, Ophelders Tim, and Speckmann Bettina. 2019. SETH says: Weak Fréchet distance is faster, but only if it is continuous and in one dimension. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 28872901. DOI: DOI:Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Buchin Maike, Hoog Ivor van der, Ophelders Tim, Schlipf Lena, Silveira Rodrigo I., and Staals Frank. 2022. Efficient Fréchet distance queries for segments. In Proceedings of the 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany (LIPIcs).Chechik Shiri, Navarro Gonzalo, Rotenberg Eva, and Herman Grzegorz (Eds.), Vol. 244, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 29:1–29:14. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Chambers Erin W., Fasy Brittany Terese, Wang Yusu, and Wenk Carola. 2020. Map-matching using shortest paths. ACM Transactions on Spatial Algorithms and Systems 6, 1 (2020), 6:1–6:17. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Chao Pingfu, Xu Yehong, Hua Wen, and Zhou Xiaofang. 2020. A survey on map-matching algorithms. In Proceedings of the 31st Australasian Database Conference.Lecture Notes in Computer Science, Vol. 12008, Springer, 121133. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Chen Daniel, Driemel Anne, Guibas Leonidas J., Nguyen Andy, and Wenk Carola. 2011. Approximate map matching with respect to the Fréchet distance. In Proceedings of the 13th Workshop on Algorithm Engineering and Experiments. SIAM, 7583. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Chen Daniel, Guibas Leonidas J., Huang Qixing, and Sun Jian. 2008. A faster algorithm for matching planar maps under the weak Fréchet distance. Unpublished, December (2008).Google ScholarGoogle Scholar
  20. [20] Chen Daniel, Sommer Christian, and Wolleb Daniel. 2021. Fast map matching with vertex-monotone fréchet distance. In Proceedings of the 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Vol. 96, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–10:20. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Cole Richard. 1987. Slowing down sorting networks to obtain faster sorting algorithms. Journal of the ACM 34, 1 (1987), 200208. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Berg Mark de, Gudmundsson Joachim, and Mehrabi Ali D.. 2017. A dynamic data structure for approximate proximity queries in trajectory data. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 48:1–48:4. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Berg Mark de, Mehrabi Ali D., and Ophelders Tim. 2017. Data structures for fréchet queries in trajectory data. In Proceedings of the 29th Canadian Conference on Computational Geometry. 214219.Google ScholarGoogle Scholar
  24. [24] Dijkstra Edsger W.. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1 (1959), 269271. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Driemel Anne and Har-Peled Sariel. 2013. Jaywalking your dog: Computing the Fréchet distance with shortcuts. SIAM Journal on Computing 42, 5 (2013), 18301866. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Driemel Anne, Har-Peled Sariel, and Wenk Carola. 2012. Approximating the Fréchet distance for realistic curves in near linear time. Discret. Comput. Geom. 48, 1 (2012), 94127. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Driemel Anne and Psarros Ioannis. 2021. ANN for time series under the Fréchet distance. In Proceedings of the 17th International Symposium on Algorithms and Data Structures.Lecture Notes in Computer Science, Vol. 12808, Springer, 315328. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. [28] Driemel Anne, Psarros Ioannis, and Schmidt Melanie. 2019. Sublinear data structures for short Fréchet queries. arXiv:1907.04420. Retrieved from http://arxiv.org/abs/1907.04420Google ScholarGoogle Scholar
  29. [29] Driemel Anne, Hoog Ivor van der, and Rotenberg Eva. 2022. On the discrete Fréchet distance in a graph. In Proceedings of the 38th Symposium on Computational Geometry. Vol. 224, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 36:1–36:18.Google ScholarGoogle Scholar
  30. [30] Duncan Christian A., Goodrich Michael T., and Kobourov Stephen G.. 2001. Balanced aspect ratio trees: Combining the advantages of k-d trees and octrees. Journal of Algorithms 38, 1 (2001), 303333. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. [31] Dütsch Fabian and Vahrenhold Jan. 2017. A filter-and-refinement-algorithm for range queries based on the Fréchet distance (GIS cup). In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 100:1–100:4. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Filtser Arnold and Filtser Omrit. 2021. Static and streaming data structures for fréchet distance queries. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms. SIAM, 11501170. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Filtser Arnold, Filtser Omrit, and Katz Matthew J.. 2020. Approximate nearest neighbor for curves - simple, efficient, and deterministic. In Proceedings of the 47th International Colloquium on Automata, Languages, and Programming. Vol. 168, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 48:1–48:19. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Filtser Omrit. 2018. Universal approximate simplification under the discrete Fréchet distance. Information Processing Letters 132 (2018), 2227. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Fu Bin, Schweller Robert T., and Wylie Tim. 2019. Discrete planar map matching. In Proceedings of the 31st Canadian Conference on Computational Geometry. 218224.Google ScholarGoogle Scholar
  36. [36] Gonzalez Teofilo F.. 1985. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38 (1985), 293306. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Gudmundsson Joachim, Horton Michael, Pfeifer John, and Seybold Martin P.. 2021. A practical index structure supporting fréchet proximity queries among trajectories. ACM Transactions on Spatial Algorithms and Systems 7, 3 (2021), 15:1–15:33. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. [38] Gudmundsson Joachim, Sha Yuan, and Wong Sampson. 2020. Approximating the packedness of polygonal curves. In Proceedings of the 31st International Symposium on Algorithms and Computation.Cao Yixin, Cheng Siu-Wing, and Li Minming (Eds.), Vol. 181, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 9:1–9:15. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Gudmundsson Joachim and Smid Michiel H. M.. 2015. Fast algorithms for approximate Fréchet matching queries in geometric trees. Computational Geometry 48, 6 (2015), 479494. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Gudmundsson Joachim, Renssen André van, Saeidi Zeinab, and Wong Sampson. 2021. Translation invariant Fréchet distance queries. Algorithmica 83, 11 (2021), 35143533. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [41] Hashemi Mahdi and Karimi Hassan A.. 2014. A critical review of real-time map-matching algorithms: Current issues and future directions. Computers, Environment and Urban Systems 48 (2014), 153165. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Indyk Piotr. 2002. Approximate nearest neighbor algorithms for Frechet distance via product metrics. In Proceedings of the 18th Symposium on Computational Geometry. ACM, 102106. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Kubicka Matej, Çela Arben, Mounier Hugues, and Niculescu Silviu-Iulian. 2018. Comparative study and application-oriented classification of vehicular map-matching methods. IEEE Intelligent Transportation Systems Magazine 10, 2 (2018), 150166. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Megiddo Nimrod. 1983. Applying parallel computation algorithms in the design of serial algorithms. Journal of the ACM 30, 4 (1983), 852865. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Quddus Mohammed A., Ochieng Washington Y., and Noland Robert B.. 2007. Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies 15, 5 (2007), 312328.Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Rubinstein Aviad. 2018. Hardness of approximate nearest neighbor search. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 12601268. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. [47] Schwarzkopf Otfried and Vleugels Jules. 1996. Range searching in low-density environments. Information Processing Letters 60, 3 (1996), 121127. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [48] Seybold Martin P.. 2017. Robust map matching for heterogeneous data via dominance decompositions. In Proceedings of the 2017 SIAM International Conference on Data Mining. SIAM, 813821. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Shigezumi Junichi, Asai Tatsuya, Morikawa Hiroaki, and Inakoshi Hiroya. 2015. A fast algorithm for matching planar maps with minimum fréchet distances. In Proceedings of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data. ACM, 2534. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Hoog Ivor van der, Rotenberg Eva, and Wong Sampson. 2022. Data structures for Approximate Discrete Fréchet distance. arXiv:2212.07124. Retrieved from https://arxiv.org/abs/2212.07124Google ScholarGoogle Scholar
  51. [51] Wei Hong, Wang Yin, Forman George, and Zhu Yanmin. 2013. Map matching by Fréchet distance and global weight optimization. Technical Paper, Departement of Computer Science and Engineering (2013), 19.Google ScholarGoogle Scholar
  52. [52] Wei Hong, Wang Yin, Forman George, and Zhu Yanmin. 2013. Map matching: Comparison of approaches using sparse and noisy data. In Proceedings of the 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 434437. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. [53] Wenk Carola, Salas Randall, and Pfoser Dieter. 2006. Addressing the need for map-matching speed: Localizing globalb curve-matching algorithms. In Proceedings of the 18th International Conference on Scientific and Statistical Database Management. IEEE Computer Society, 379388. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. [54] Williams Ryan. 2005. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical Computer Science 348, 2–3 (2005), 357365. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. [55] Wylie Tim and Zhu Binhai. 2014. Intermittent map matching with the discrete fréchet distance. arXiv:1409.2456. Retrieved from https://arxiv.org/abs/1409.2456Google ScholarGoogle Scholar
  56. [56] Zheng Yu and Zhou Xiaofang (Eds.). 2011. Computing with Spatial Trajectories. Springer. DOI:Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Map Matching Queries on Realistic Input Graphs Under the Fréchet Distance

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Algorithms
      ACM Transactions on Algorithms  Volume 20, Issue 2
      April 2024
      278 pages
      ISSN:1549-6325
      EISSN:1549-6333
      DOI:10.1145/3613604
      • Editor:
      • Edith Cohen
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 March 2024
      • Online AM: 30 January 2024
      • Accepted: 23 January 2024
      • Revised: 16 January 2024
      • Received: 23 December 2022
      Published in talg Volume 20, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)63
      • Downloads (Last 6 weeks)40

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text