Skip to main content
Log in

Thermophysical Properties of Beech Wood in the Range from Room Temperature to 900 °C

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Wood is a structural material of biological origin that undergoes thermal degradation when exposed to high temperatures. Additionally, wood shows an anisotropic behavior in terms of thermal expansion and thermal conductivity along and across fiber direction. This work reports thermophysical measurements of beech wood from room temperature up to 900 °C. The wooden material was investigated in different states: moist, dry, charred and during pyrolysis. A push-rod dilatometer was used to measure thermal expansion, from which temperature dependent density was derived. Specific heat was determined by differential scanning calorimetry. A laser flash apparatus was applied to measure thermal diffusivity. Thermal conductivity was calculated from thermal diffusivity, specific heat, and density. The measurements of thermal expansion and thermal diffusivity were performed along and across fiber direction to consider the anisotropic behavior of wooden material. The results of the thermophysical properties are reported from room temperature to 200 °C for the beech wood, during pyrolysis, and up to 900 °C for the charred material. It was found that thermal expansion of beech wood across fiber direction is greater than along fiber direction in the order of a magnitude. In contrast, thermal expansion of charred material is rather independent on fiber direction. Thermal conductivity of beech wood along fiber direction was found to be approx. 2 to 3 times higher than across fiber direction. In the case of the charred material the relative difference is smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. K. Maeda, Y. Tsunetsugu, K. Miyamoto, T. Shibusawa, J. Wood Sci. 67, 20 (2021). https://doi.org/10.1186/s10086-021-01951-1

    Article  Google Scholar 

  2. O. Vay, K. De Borst, C. Hansmann, A. Teischinger, U. Müller, Wood Sci. Technol. 49, 577–589 (2015). https://doi.org/10.1007/s00226-015-0716-x

    Article  CAS  Google Scholar 

  3. E. Fonseca, L. Barreira, W.I.T. Trans, Built Environ. 108, 449–457 (2009). https://doi.org/10.2495/SAFE090421

    Article  Google Scholar 

  4. D. Konakova, M. Cachova, M. Keppert, E. Vejmelkova, Adv. Mater. Res. 982, 100–103 (2014). https://doi.org/10.4028/www.scientific.net/AMR.982.100

    Article  Google Scholar 

  5. M. Kymäläinen, H. Turunen, P. Cermak, S. Hautamäki, L. Rautkari, Materials 11, 2083 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. E. Fonseca, L. Barreira, D.C.S. Coelho, Int. J. Saf. Sec. Eng. 2, 242–255 (2012). https://doi.org/10.2495/SAFE-V2-N3-242-255

    Article  Google Scholar 

  7. H. Takeda, J. Mehaffey, Fire Mater. 22, 133–140 (1998)

    Article  CAS  Google Scholar 

  8. W. Simpson, A. TenWolde, in Wood Handbook: Wood as an Engineering Material (USDA Forest Service, Forest Products Laboratory, General technical report FPL; GTR-113, Madison, WI, 1999), pp. 3.1–3.24

  9. Y.P. Hu, W.B. Li, S. Wu, Y.J. Wang, W.Z. Zhong, Z. Hu, Int. J. Therm. 44, 131 (2023). https://doi.org/10.1007/s10765-023-03238-7

    Article  ADS  CAS  Google Scholar 

  10. V.D. Thi, M. Khelifa, ME. Ganaoui, Y. Rogaume, in World Conference on Timber Engineering (WCTE), 2016. ISBN: 978-3-903039-00-1

  11. EN 1995-1-2: Eurocode 5: Design of Timber Structures—Part 1–2: General—Structural Fire Design (2004)

  12. J.R. Mehaffey, P. Cuerrier, G. Carisse, Fire Mater. 18, 297–305 (1994). https://doi.org/10.1002/fam.810180505

    Article  CAS  Google Scholar 

  13. M. Lutze, Buchenholz—Rohstoff für heute und morgen. LWF atuell 109, 16–19 (2016)

    Google Scholar 

  14. W.T. Simpson, in Wood Handbook: Wood as an Engineering Material (USDA Forest Service, Forest Products Laboratory, General technical report FPL; GTR-113, Madison, WI, 1999), pp. 12.1–12.20

  15. E. Kaschnitz, L. Kaschnitz, S. Heugenhauser, Int. J. Thermophys. 40, 27 (2019). https://doi.org/10.1007/s10765-019-2490-8

    Article  ADS  CAS  Google Scholar 

  16. J.A. Cape, G.W. Lehman, J. Appl. Phys. 34, 1909–1913 (1963). https://doi.org/10.1063/1.1729711

    Article  ADS  Google Scholar 

  17. NETZSCH Proteus®, https://analyzing-testing.netzsch.com/en/products/software/proteus. Accessed Dec 2023

  18. R.L. McMaster et al., J. Heat Transf. 121, 15–21 (1999). https://doi.org/10.1115/1.2825929

    Article  Google Scholar 

  19. M.W. Chase, in NIST-JANAF Thermochemical Tables Part I, Al-Co, Journal of Physical and Chemical Reference Data, Monograph, No. 9, 4th edn. (1998), p. 550.

  20. A. Cziegler, E. Kaschnitz, in Thermal Conductivity 35/Thermal Expansion 23—Proceedings of the 35th International Thermal Conductivity Conference and the 23th International Thermal Expansion Symposium, ed. by J. Blum, M.A. Thermitus, (DEStech Publications, Inc., Lancaster, 2023), pp. 25–41. ISBN: 978-1-60595-688-6

  21. https://www.chemie.de/lexikon/Wasser_%28Stoffdaten%29.html. Accessed Aug 2022

  22. M. Poletto, Revista Arvore 40, 941–948 (2016). https://doi.org/10.1590/0100-67622016000500018

    Article  MathSciNet  CAS  Google Scholar 

  23. Q. Liu, S.R. Wang, M. Fang, M. Luo, K.F. Cen, W.K. Chow, Fire Saf. Sci. 7 (2007)

  24. Y. Zhang, L. Zhang, Z. Shan, L. Wang, W. Liu, J. Renew. Mater. 7, 1093–1108 (2019). https://doi.org/10.32604/jrm.2019.07335

    Article  Google Scholar 

  25. J. Rath, M.G. Wolfinger, G. Steiner, G. Krammer, F. Barontini, V. Cozzani, Fuel 82, 81–91 (2003). https://doi.org/10.1016/S0016-2361(02)00138-2

    Article  Google Scholar 

  26. A. Rinta-Paavola, S. Hostikka, in Proceedings of the I Forum Wood Building Baltic, (2019). ISBN: 978-9949-83-398-6

  27. O. Shapchenkova, S. Loskutov, A. Aniskina, Z. Börcsök, Z. Pasztory, Eur. J. Wood Wood Prod. 80, 409–417 (2022). https://doi.org/10.1007/s00107-021-01763-6

    Article  CAS  Google Scholar 

  28. H. Kubler, L. Liang, L.S. Chang, Wood Fiber 5, 257–267 (1973)

    Google Scholar 

  29. R. Espinoza-Herrera, L. Olmos, I.A. Trujillo, P. Garnica-Gonzalez, Cerne 26, 256–264 (2020). https://doi.org/10.1590/01047760202026022723

    Article  Google Scholar 

  30. G. Goli, F. Becherini, M. Concetta Di Tuccio, A. Bernardi, M. Fioravanti, J. Wood Sci. 65, 4 (2019). https://doi.org/10.1186/s10086-019-1781-9

    Article  Google Scholar 

  31. G. Li, L. Gao, F. Liu, M. Qiu, G. Dong, Fund. Res. (2022). https://doi.org/10.1016/j.fmre.2022.05.014

    Article  Google Scholar 

  32. P. Koch, Wood Sci. 1, 203–214 (1968)

    Google Scholar 

  33. C. Dupont, R. Chiriac, G. Gauthier, F. Toche, Fuel 115, 644–651 (2014). https://doi.org/10.1016/j.fuel.2013.07.086

    Article  CAS  Google Scholar 

  34. L. Czajkowski, W. Olek, J. Weres, Eur. J. Wood Prod. 78, 425–431 (2020). https://doi.org/10.1007/s00107-020-01525-w

    Article  CAS  Google Scholar 

  35. M. Gupta, J. Yang, C. Roy, Fuel 82, 919–927 (2003). https://doi.org/10.1016/S0016-2361(02)00398-8

    Article  CAS  Google Scholar 

  36. S. Sinha, A. Jhalani, M. Ravi, A. Ray, J. Solar Energy Soc. India 10, 41–62 (2000)

    Google Scholar 

  37. A.I. Bartlett, R.M. Hadden, L.A. Bisby, Fire Techn. 55, 1–49 (2019). https://doi.org/10.1007/s10694-018-0787-y

    Article  Google Scholar 

  38. H. Kubler, Wood Fiber Sci. 14, 166–177 (2007)

    Google Scholar 

  39. T. Harada, T. Hata, S. Ishihara, J. Wood Sci. 44, 425–431 (1998). https://doi.org/10.1007/BF00833405

    Article  CAS  Google Scholar 

  40. W. Sonderegger, S. Hering, P. Niemz, Holzforschung 65, 369–375 (2011). https://doi.org/10.1515/hf.2011.036

    Article  CAS  Google Scholar 

  41. A. Frangi, Brandverhalten von Holz-Beton-Verbunddecken. https://doi.org/10.3929/ethz-a-004273454

  42. J. König, Fire Mater. 30, 51–63 (2006). https://doi.org/10.1002/fam.898

    Article  CAS  Google Scholar 

  43. V. Hankalin, T. Ahonen, R. Raiko, in Finish-Swedish Flame Days (2009)

  44. da Silva dos Santos, M.A. Martins, E. Pereira, A. De Cassia Oliveira Carneiro, CERNE 26, 109–117 (2020). https://doi.org/10.1590/01047760202026012699

  45. C. Luke Williams, T.L. Westover, L.M. Petkovic, A.C. Matthews, D.M. Stevens, K.R. Nelson, ACS Sustain. Chem. Eng. 5, 1019–1025 (2016). https://doi.org/10.1021/acssuschemeng.6b02326

    Article  CAS  Google Scholar 

  46. L.E. Brown, An experimental and analytical study of wood pyrolysis (1972), https://shareok.org/handle/11244/3250. Accessed Aug 2022

Download references

Funding

This work was supported by the “ACR Strategische Projekte” funding program coordinated by the Austrian Cooperative Research (ACR) and funded by the Austrian Federal Ministry of Labor and Economy (BMAW).

Author information

Authors and Affiliations

Authors

Contributions

AC and EK did the work and wrote the manuscript.

Corresponding author

Correspondence to Andreas Cziegler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Selected Papers of the 22nd European Conference on Thermophysical Properties.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cziegler, A., Kaschnitz, E. Thermophysical Properties of Beech Wood in the Range from Room Temperature to 900 °C. Int J Thermophys 45, 26 (2024). https://doi.org/10.1007/s10765-023-03319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03319-7

Keywords

Navigation