Skip to main content
Log in

Large-Area Quantum Dot Light-Emitting Diodes Employing Sputtered Zn0.85Mg0.15O Electron Transport Material

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report a large-area quantum dot light-emitting diode (QLED) with sputtered Zn0.85Mg0.15O (ZMO) as an electron transport layer (ETL). Uniform ZMO is applied as ETL of the inverted structured QLED and the adjustment of Ar/O2 ratio on device characteristics is studied in detail. Compared to pristine ZMO, ZMOs with O2 gas are found to be beneficial to the charge balance in the emitting layer of QLEDs mainly by their upshifted conduction band minimum, which in turn limits an electron injection. Additionally, it is found that oxygen vacancies in the ZMO, acting as the exciton quenching sites, are responsible for the device stability. QLEDs with 6:1 ZMO produce a maximum luminance of 136,257 cd/m2 and external quantum efficiency of 5.15%, which are the best device performances to date among QLEDs with sputtered ETLs. These results indicate that the sputtered ZMO shows great promise for use as an inorganic ETL for future large-area QLEDs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun, Q., Wang, A.Y., Li, L.S., Wang, D., Zhu, T., Xu, J., Yang, C., Li, Y.: Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photon. 1, 717–722 (2007). https://doi.org/10.1038/nphoton.2007.226

    Article  ADS  CAS  Google Scholar 

  2. Coe, S., Woo, W.K., Bawendi, M., Bulovic, V.: Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002). https://doi.org/10.1038/nature01217

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Colvin, V.L., Schlamp, M.C., Alivisatos, A.P.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994). https://doi.org/10.1038/370354a0

    Article  ADS  CAS  Google Scholar 

  4. Chiu, P.-C., Yang, S.-H.: Improvement in hole transporting ability and device performance of quantum dot light emitting diodes. Nanoscale Adv. 2, 401–407 (2020). https://doi.org/10.1039/C9NA00618D

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hussain, S., Subramanian, A., Yan, S., Din, N., Abbas, G., Shuja, A., Lei, W., Khan, Q.: Engineering architecture of quantum dot-based light-emitting diode of high device performance with double-sided Emission fabricated by Nonvacuum Technique. ACS Appl. Electron Mater. 2, 2383–2389 (2020). https://doi.org/10.1021/acsaelm.0c00332

    Article  CAS  Google Scholar 

  6. Wang, S., Guo, Y., Feng, D., Chen, L., Feng, W., Shen, H., Du, Z.: Bandgap tunable Zn1−xMgxO thin films as electron transport layers for high performance quantum dot light-emitting diodes. J. Mater. Chem. 5, 4724–4730 (2017). https://doi.org/10.1039/C7TC00453B

    Article  CAS  Google Scholar 

  7. Sun, Y., Jiang, Y., Peng, H., Wei, J., Zhang, S., Chen, S.: Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer. Nanoscale 9, 8962–8969 (2017). https://doi.org/10.1039/C7NR02099F

    Article  CAS  PubMed  Google Scholar 

  8. Pan, Y.J., Chen, J., Huang, Q., Khan, Q., Liu, X., Tao, Z., Zhang, Z., Lei, W., Nathan, A.: Size tunable zno nanoparticles to enhance electron injection in solution processed QLEDs. ACS Photonics 3, 215–222 (2016). https://doi.org/10.1021/acsphotonics.5b00267

    Article  CAS  Google Scholar 

  9. Qian, L., Zheng, Y., Xue, J., Holloway, P.H.: Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 5, 543–548 (2011). https://doi.org/10.1038/nphoton.2011.171

    Article  ADS  CAS  Google Scholar 

  10. Castan, A., Kim, H.M., Jang, J.: All-solution-processed inverted quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces 6, 2508–2515 (2014). https://doi.org/10.1021/am404876p

    Article  CAS  PubMed  Google Scholar 

  11. Sun, D., Wong, M., Sun, L., Li, Y., Miyatake, N., Sue, H.-J.: Purification and stabilization of colloidal ZnO nanoparticles in methanol. J. Sol-Gel Sci. Technol. 43, 237–243 (2007). https://doi.org/10.1007/s10971-007-1569-z

    Article  CAS  Google Scholar 

  12. Cao, D., Gong, S., Shu, X., Zhu, D., Liang, S.: Preparation of ZnO nanoparticles with high dispersibility based on oriented attachment (OA) process. Nanoscale Res. Lett. 14, 210 (2019). https://doi.org/10.1186/s11671-019-3038-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kelly, P.J., Arnell, R.D.: Magnetron sputtering: a review of recent developments and applications. Vacuum 56, 159–172 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X

    Article  ADS  CAS  Google Scholar 

  14. Biswas, M.M.R., Hossain, M.F., Okada, H.: Fabrication of inverted ZnCuInS/ZnS based quantum-dot light-emitting diodes with the non-stoichiometric ZnO layers. Jpn. J. Appl. Phys. 60, 084001 (2021). https://doi.org/10.35848/1347-4065/ac1129

    Article  ADS  CAS  Google Scholar 

  15. Kim, D.-J., Lee, H.-N.: Improving the charge balance and performance of CdSe/ZnS quantum-dot light-emitting diodes with a sputtered zinc-tin-oxide electron-transport layer and a thermally evaporated tungsten-oxide charge-restricting layer. Jpn. J. Appl. Phys. 58, 106502 (2019). https://doi.org/10.7567/1347-4065/ab3c77

    Article  ADS  CAS  Google Scholar 

  16. Yeom, J.E., Shin, D.H., Lampande, R., Jung, Y.H., Mude, N.N., Park, J.H., Kwon, J.H.: Good charge balanced inverted red InP/ZnSe/ZnS-quantum dot light-emitting diode with new high mobility and deep HOMO level hole transport layer. ACS Energy Lett. 5, 3868–3875 (2020). https://doi.org/10.1021/acsenergylett.0c02193

    Article  CAS  Google Scholar 

  17. Imran, M., Ahmad, R., Afzal, N., Rafique, M.: Copper ion implantation effects in ZnO film deposited on flexible polymer by DC Magnetron sputtering. Vacuum 165, 72–80 (2019). https://doi.org/10.1016/j.vacuum.2019.04.010

    Article  ADS  CAS  Google Scholar 

  18. Zhao, W., Li, H., Li, D., Liu, Z., Wang, D., Liu, S.: Comprehensive investigation of sputtered and spin-coated zinc oxide electron transport layers for highly efficient and stable planer perovskite solar cells. J. Power Sour. 427, 223–230 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.088

    Article  ADS  CAS  Google Scholar 

  19. Polydorou, E., Zeniou, A., Tsikritzis, D., Soultati, A., Sakellis, I., Gardelis, S., Papadopoulos, T.A., Briscoe, J.L., Palilis, C., Kennou, S., Gogolides, E., Argitis, P., Davazoglou, D., Vasilopoulou, M.: Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of Inverted Polymer Solar cells. J. Mater. Chem. A 4, 11844–11858 (2016). https://doi.org/10.1039/C6TA03594A

    Article  CAS  Google Scholar 

  20. Rouchdi, M., Salmani, E., Fares, B., Hassanain, N., Mzerd, A.: Synthesis and characteristics of mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017). https://doi.org/10.1016/j.rinp.2017.01.023

    Article  ADS  Google Scholar 

  21. Kamada, Y., Furuta, M., Hiramatsu, T., kawaharamura, T., Wang, D., Shimakawa, S., Li, C., Fujita, S., Hirao, T.: Study on oxygen source and its effect on film properties of ZnO deposited by radio frequency magnetron sputtering. Appl. Surf. Sci. 258, 695–699 (2011). https://doi.org/10.1016/j.apsusc.2011.07.100

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Materials Innovation Project (2020M3H4A3082656) funded by National Research Foundation of Korea and the Industry technology R&D program (20016195) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by Kyonggi University’s Graduate Research Assistantship 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwan Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Kim, J. Large-Area Quantum Dot Light-Emitting Diodes Employing Sputtered Zn0.85Mg0.15O Electron Transport Material. Electron. Mater. Lett. 20, 140–149 (2024). https://doi.org/10.1007/s13391-023-00482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00482-9

Keywords

Navigation