Skip to main content

Advertisement

Log in

Ikaite versus seep-related carbonate precipitation in the Late Jurassic–Early Cretaceous of West Spitsbergen: evidence for cold versus warm climates?

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Glendonites and seep-related carbonate bodies from the Jurassic/Cretaceous boundary interval of West Spitsbergen were studied using mineralogical, isotopic, and geochemical methods. The stratigraphic distribution of seep-related carbonate bodies and glendonites (pseudomorphs after ikaite, Ca(CO3)·6H2O) reveals that although they can be occasionally found close to each other, their formation differs through time. Seep carbonates are found in the Oxfordian, Kimmeridgian, Volgian, and Ryazanian deposits, while glendonites appear in the Valanginian–Hauterivian and Middle Aptian–Lower Albian deposits of West Spitsbergen. Furthermore, numerous appearances of seep carbonates correlate with warming and shelf dysoxic–anoxic events in the Arctic, while glendonite occurrences correlate with cooling events. The δ13C values obtained for seep-related carbonates and glendonite samples reflect mixed sources including thermogenic and biogenic methane, oil fractions, decomposing organic matter, and dissolved inorganic carbon. We assume the precipitation of seep carbonates was caused by methanogenesis and anaerobic oxidation of organic matter promoting dense communities of benthic organisms and carbonate precipitation in warm climatic condition. At the end of the Ryazanian, shallowing of the basin coupled with climate cooling led to decrease in methanogenesis and anaerobic decomposition of methane and organic matter. Locally, in areas of anaerobic organic matter oxidation under low bottom temperatures, ikaite crystallized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Supplementary data to this article can be found online via link https://doi.org/10.5281/zenodo.10124638 or from KV k.vasilyeva@spbu.ru.

References

  • Abay TB, Karlsen DA, Pedersen JH (2014) Source rocks at Svalbard: an overview of Jurassic and Triassic formations and comparison with offshore Barents sea time equivalent source rock formations. Search and discovery article #30372. https://www.searchanddiscovery.com/documents/2014/30372abay/ndx_abay

  • Abbink O, Targarona J, Brinkhuis H, Visscher H (2001) Late Jurassic to earliest Cretaceous palaeoclimatic evolution of the Northern Sea. Global Planet Change 30:231–256

    Article  ADS  Google Scholar 

  • Álvaro JJ, Holmer LE, Shen Y, Popov LE, Ghobadi PM, Zhang Z, Ahlberg P, Bauert H, González-Acebrón L (2022) Submarine metalliferous carbonate mounds in the Cambrian of the Baltoscandian Basin induced by vent networks and water column stratification. Sci Rep 12:8475. https://doi.org/10.1038/s41598-022-12379-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Amano K, Kiel S, Hryniewicz K, Jenkins RG (2022) Bivalvia in ancient hydrocarbon seeps. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps, topics in geobiology. Springer, Cham, pp 267–321. https://doi.org/10.1007/978-3-031-05623-9_10

  • Århus N (1992) Some dinoflagellate cysts from the Lower Cretaceous of Spitsbergen. Grana 31:305–314. https://doi.org/10.1080/00173139209429453

    Article  Google Scholar 

  • Bäckström SA, Nagy J (1985) Depositional history and fauna of a Jurassic phosphorite conglomerate (the Brentskardhaugen Bed) in Spitsbergen. Norsk Polarinstitutt, Oslo

    Google Scholar 

  • Bang E, Nakrem HA, Little CTS, Kürschner W, Kelly SRA, Smelror M (2022) Palynology of early cretaceous (Barremian to Aptian) hydrocarbon (methane) seep carbonates and associated mudstones, Wollaston Forland, Northeast Greenland. Acta Palaeobot 62: 11–23. https://doi.org/10.35535/acpa-2022-0002

  • Baraboshkin EY (2002) Early Cretaceous seaways of the Russian Platform and the problem of Boreal/Tethyan correlation. In: Michalik J (ed) Tethyan/Boreal Cretaceous Correlation. Mediterranean and Boreal cretaceous paleobiogeographic areas in Central and Eastern Europe. Publishing House of Slovak Academy, Bratislava, pp 39–78

  • Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143:245–255. https://doi.org/10.1016/0012-821X(96)00127-6

    Article  ADS  CAS  Google Scholar 

  • Beauchamp B, Savard M (1992) Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic. Palaios 7:434. https://doi.org/10.2307/3514828

    Article  ADS  Google Scholar 

  • Beauchamp B, Harrison JC, Nassichuk WW, Krouse HR, Eliuk LS (1989) Cretaceous cold-seep communities and methane-derived carbonates in the Canadian Arctic. Science 244:53–56. https://doi.org/10.1126/science.244.4900.53

    Article  ADS  CAS  PubMed  Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeogr Palaeoclimatol Palaeoecol 232:362–407. https://doi.org/10.1016/j.palaeo.2005.06.018

    Article  Google Scholar 

  • Conrad R (2023) Complexity of temperature dependence in methanogenic microbial environments. Front in Microbiol 14:1232946. https://doi.org/10.3389/fmicb.2023.1232946

    Article  Google Scholar 

  • Dallmann WK (2015) Geoscience Atlas of Svalbard. Norsk Polarinstitutt

  • Derkachev AN, Nikolaeva NA, Mozherovsky AV, Grigor’eva TN, Ivanova ED, Pletnev SP, Barinov NN, Chubarov VM (2007) Mineralogical and geochemical indicators of anoxic sedimentation conditions in local depressions within the Sea of Okhotsk in the late Pleistocene-Holocene. Russ J Pac Geol 1:203–229. https://doi.org/10.1134/S1819714007030013

    Article  Google Scholar 

  • Domack EW, Halverson G, Willmott V, Leventer A, Brachfeld S, Ishman S (2007) Spatial and temporal distribution of ikaite crystals in Antarctic glacial marine sediments. U.S. Geol Surv Open File Rep. 1047

  • Dypvik H (1984) Jurassic and Cretaceous black shales of the Janusfjellet Formation, Svalbard, Norway. Sediment Geol 41:235–248. https://doi.org/10.1016/0037-0738(84)90064-2

    Article  ADS  CAS  Google Scholar 

  • Dypvik H, Nagy J, Eikeland TA, Backer-Owe K, Johansen H (1991) Depositional conditions of the Bathonian to Hauterivian Janusfjellet Subgroup, Spitsbergen. Sediment Geol 72:55–78. https://doi.org/10.1016/0037-0738(91)90123-U

    Article  ADS  Google Scholar 

  • Dzyuba OS, Izokh OP, Shurygin BN (2013) Carbon isotope excursions in Boreal Jurassic-Cretaceous boundary sections and their correlation potential. Palaeogeogr Palaeoclimatol Palaeoecol 381:33–46. https://doi.org/10.1016/j.palaeo.2013.04.013

    Article  Google Scholar 

  • Ershova ES (1969) New records of Late Volgian ammonites in West Spitsbergen. Sci Rep NIIGA 26:52–67 (in Russian)

    Google Scholar 

  • Ershova ES (1972) Hauterivian ammonites of Spitsbergen island. In: Mesozoic deposits of Svalbard. Leningrad, pp 90–99 (in Russian)

  • Feng D, Roberts HH (2011) Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope. Earth Planet Sci Lett 309(1–2):89–99. https://doi.org/10.1016/j.epsl.2011.06.017

    Article  ADS  CAS  Google Scholar 

  • Feng D, Roberts H, Joye SB, Heidari E (2013) Formation of low-magnesium calcite at cold seeps in an aragonite sea. Terra Nova 26(2):150–156. https://doi.org/10.1111/ter.12081

    Article  ADS  CAS  Google Scholar 

  • Ge L, Jiang S-Y, Swennen R, Yang T, Wu N-Y, Liu J, Chen D-H (2010) Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry. Mar Geol 277:21–30. https://doi.org/10.1016/j.margeo.2010.08.008

    Article  ADS  CAS  Google Scholar 

  • Glazunova AE (1973) Palaeontological substantiation of stratigraphical subdivision of the Cretaceous deposits of the Volga area. Lower Cretaceous. Nedra, Moscow (in Russian)

  • Grasby SE, McCune GE, Beauchamp B, Galloway JM (2017) Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. Geol Soc Am Bull 129:771–787. https://doi.org/10.1130/B31600.1

    Article  CAS  Google Scholar 

  • Greinert J, Derkachev A (2004) Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation. Mar Geol 204:129–144. https://doi.org/10.1016/S0025-3227(03)00354-2

    Article  ADS  CAS  Google Scholar 

  • Grøsfjeld K (1992) Palynological age constraints on the base of the Helvetiafjellet Formation (Barremian) on Spitsbergen. Polar Res 11:11–19. https://doi.org/10.3402/polar.v11i1.6713

    Article  Google Scholar 

  • Grundvåg SA, Jelby ME, Sliwinska KK, Nøhr-Hansen H, Aadland T, Sandvik SE, Tennvassås I, Engen T, Olaussen S (2019) Sedimentology and palynology of the Lower Cretaceous succession of central Spitsbergen: integration of subsurface and outcrop data. Nor J Geol 99(2):1–32. https://doi.org/10.17850/njg006

  • Hammer Ø, Nakrem HA, Little CTS, Hryniewicz K, Sandy MR, Hurum JH, Druckenmiller P, Knutsen EM, Høyberget M (2011) Hydrocarbon seeps from close to the Jurassic-Cretaceous boundary, Svalbard. Palaeogeogr Palaeoclimatol Palaeoecol 306:15–26. https://doi.org/10.1016/j.palaeo.2011.03.019

    Article  Google Scholar 

  • Himmler T, Bach W, Bohrmann G, Peckmann J (2010) Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem Geol 277:126–136. https://doi.org/10.1016/j.chemgeo.2010.07.015

    Article  ADS  CAS  Google Scholar 

  • Himmler T, Bayon G, Wangner D, Enzmann F, Peckmann J, Bohrmann G (2016) Seep-carbonate lamination controlled by cyclic particle flux. Sci Rep. https://doi.org/10.1038/srep37439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiruta A, Matsumoto R (2022) Geochemical comparison of ikaite and methane-derived authigenic carbonates recovered from Echigo Bank in the Sea of Japan. Mar Geol. https://doi.org/10.1016/j.margeo.2021.106672

  • Hoel A, Orvin AK (1937) Das Festnungsprofil auf Spitzbergen. Karbon—Kreide. 1. Vermessungsresultate. Skrifter om Svalbard og Ihsavet. Norsk Polarinstitutt, Skrifter 152

  • Hryniewicz K, Hagström J, Hammer Ø, Kaim A, Little CTS, Nakrem HA (2015) Late Jurassic-Early Cretaceous hydrocarbon seep boulders from Novaya Zemlya and their faunas. Palaeogeogr Palaeoclimatol Palaeoecol 436:231–244. https://doi.org/10.1016/j.palaeo.2015.06.036

    Article  Google Scholar 

  • Hryniewicz K, Little CTS, Nakrem HA (2014a) Bivalves from the latest Jurassic-earliest Cretaceous hydrocarbon seep carbonates from central Spitsbergen, Svalbard. Zootaxa 3859:1. https://doi.org/10.11646/zootaxa.3859.1.1

  • Hryniewicz K, Nakrem HA, Hammer Ø, Little CTS, Kaim A, Sandy MR, Hurum JH (2014b) The palaeoecology of the latest Jurassic–Earliest Cretaceous hydrocarbon seep carbonates from Spitsbergen, Svalbard. Letheaia. https://doi.org/10.1111/let.12112

  • Huggett JM, Schultz BP, Shearman DJ, Smith AJ (2005) The petrology of ikaite pseudomorphs and their diagenesis. Proc Geol Assoc 116:207–220. https://doi.org/10.1016/S0016-7878(05)80042-2

    Article  Google Scholar 

  • Kaplan ME (1979) Calcite pseudomorphs (pseudogaylussite, jarrowite, thinolite, glendonite, gennoishi, White Sea hornlets) in sedimentary rocks. Review of major localities. VINITI, p 39 (in Russian)

  • Kelly SRA, Blanc E, Price SP, Whitham AG (2000) Early Cretaceous giant bivalves from seep-related limestone mounds, Wollaston Forland, Northeast Greenland. Geol Soc Lond Spec Publ 177:227–246. https://doi.org/10.1144/GSL.SP.2000.177.01.13

    Article  Google Scholar 

  • Kemper E, Schmitz HH (1981) Glendonite—Indikatoren des polarmarinen Ablagerungsmilieus. Geol Rundsch 70:759–773. https://doi.org/10.1007/BF01822149

    Article  ADS  Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA 97(4):1400–1405

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Koevoets MJ, Abay TB, Hammer Ø, Olaussen S (2016) High-resolution organic carbon–isotope stratigraphy of the Middle Jurassic-Lower Cretaceous Agardhfjellet Formation of central Spitsbergen, Svalbard. Palaeogeogr Palaeoclimatol Palaeoecol 449:266–274. https://doi.org/10.1016/j.palaeo.2016.02.029

    Article  Google Scholar 

  • Koevoets MJ, Hammer Ø, Olaussen S, Senger K, Smelror M (2018) Integrating subsurface and outcrop data of the Middle Jurassic to Lower Cretaceous Agardhfjellet Formation in central Spitsbergen. Nor J Geol. https://doi.org/10.17850/njg98-4-01

  • Kravchishina MD, Lein AY, Savvichev AS, Reykhard LE, Dara OM, Flint MV (2017) Authigenic Mg-calcite at a cold methane seep site in the Laptev Sea. Oceanology 57:174–191. https://doi.org/10.1134/S0001437017010064

    Article  ADS  CAS  Google Scholar 

  • Krylov A, Logvina E, Matveeva T, Prasolov E, Sapega V, Demidova A, Radchenko M (2015) Ikaite (CaCO3*6H2O) in bottom sediments of the Laptev Sea and the role of anaerobic methane oxidation in this mineralforming process. Zapiski RMO 4:61–75

    Google Scholar 

  • Lavergne C, Aguilar-Muñoz P, Calle N, Thalasso F, Astorga-España MS, Sepulveda-Jauregui A, Martinez-Cruz K, Gandois K, Mansilla A, Chamy R, Barret M, Cabrol L (2021) Temperature differently affected methanogenic pathways and microbial communities in sub-Antarctic freshwater ecosystems. Environ Int. https://doi.org/10.1016/j.envint.2021.106575

  • Li J, Xu X, Liu C, Wu N, Sun Z, He X, Chen Y (2021) Active methanotrophs and their response to temperature in marine environments: an experimental study. J Mar Sci Eng. https://doi.org/10.3390/jmse9111261

  • Loyd SJ, Sample J, Tripati RE, Defliese WF, Brooks K, Hovland M, Torres M, Marlow J, Hancock LG, Martin R, Lyons T, Tripati AE (2016) Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures. Nat Commun. https://doi.org/10.1038/ncomms12274

  • Mau S, Römer M, Torres ME, Bussmann I, Pape T, Damm E, Geprägs P, Wintersteller P, Hsu CW, Loher M, Bohrmann G (2017) Widespread methane seepage along the continental margin off Svalbard—from Bjørnøya to Kongsfjorden. Sci Rep. https://doi.org/10.1038/srep42997

    Article  PubMed  PubMed Central  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust: trace element composition and the upper continental crust. Geochem Geophys Geosystems. https://doi.org/10.1029/2000GC000109

    Article  Google Scholar 

  • Mikhailova KY, Rogov MA, Ershova VB, Vasileva KY, Pokrovsky BG, Baraboshkin EY (2021a) New data on stratigraphy and distributions of glendonites from the Carolinefjellet Formation (Middle Aptian-Lower Albian, Cretaceous), Western Spitsbergen. Stratigr Geol Correl 29:21–35. https://doi.org/10.1134/S0869593821010056

    Article  ADS  Google Scholar 

  • Mikhailova K, Rogov M, Ershova V, Vereshchagin O, Shurekova O, Feodorova A, Zakharov V (2021b) Middle Jurassic-Lower Cretaceous glendonites from the eastern Barents Shelf as a tool for paleoenvironmental and paleoclimatic reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 579:110600. https://doi.org/10.1016/j.palaeo.2021.110600

    Article  Google Scholar 

  • Morales C, Rogov M, Wierzbowski H, Ershova V, Suan G, Adatte T, Föllmi KB, Tegelaar E, Reichart GJ, de Lange GJ, Middelburg JJ, van de Schootbrugge B (2017) Glendonites track methane seepage in Mesozoic polar seas. Geology 45:503–506. https://doi.org/10.1130/G38967.1

    Article  ADS  CAS  Google Scholar 

  • Muramiya Y, Yoshida H, Minami M, Mikami T, Kobayashi T, Sekiuchi K, Katsuta N (2022) Glendonite concretion formation due to dead organism decomposition. Sed Geol 429:106075. https://doi.org/10.1016/j.sedgeo.2021.106075

    Article  CAS  Google Scholar 

  • Nagy J (1970) Ammonite faunas and stratigraphy of Lower Cretaceous (Albian) rocks in southern Spitsbergen. Norsk Polarinstitutt, Oslo

    Google Scholar 

  • Nagy J, Lofaldy M, Backstrom SA (1988) Aspects of Foraminiferal distribution and depositional conditions in Middle Jurassic to Early Cretaceous shales in Eastern Spitsbergen. Abh Geol B-A 41:287–300

    Google Scholar 

  • Nagy J, Reolid M, Rodríguez-Tovar FJ (2009) Foraminiferal morphogroups in dysoxic shelf deposits from the Jurassic of Spitsbergen. Polar Res 28:214–221. https://doi.org/10.1111/j.1751-8369.2009.00112.x

    Article  Google Scholar 

  • Pchelina TM (1965) Hauterivian Stage of West Spitsbergen. Dokl Akad Nauk SSSR, Earth Sci Sect 163(1–6):71–72

    Google Scholar 

  • Pchelina TM (1967) Stratigraphy and some characteristics of the composition of Mesozoic sediments in the southern and eastern regions of West Spitsbergen. In: Materialy po stratigrafii Shpitsbergena, NIIGA, Leningrad, pp 121–158 (In Russian; English translation 1977, National Lending Library for Science and Technology, Boston Spa, England, pp 164–205)

  • Pchelina TM (1983) New materials on Mesozoic stratigraphy of Spitsbergen archipelago. In: Geology of Spitsbergen. NIIGA, Leningrad, pp 121–141 (in Russian)

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane–seeps. Chem Geol 205:443–467. https://doi.org/10.1016/j.chemgeo.2003.12.025

    Article  ADS  CAS  Google Scholar 

  • Peckmann J, Campbell KA, Walliser OH, Reitner J (2007) A Late Devonian hydrocarbon-seep deposits dominated by Dimerelloid Brachiopods, Morocco. Palaios 22:114–122. https://doi.org/10.2110/palo.2005.p05-115

    Article  ADS  Google Scholar 

  • Price GD, Nunn EV (2010) Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: Transient glacial temperatures during the Cretaceous greenhouse. Geology 38:251–254. https://doi.org/10.1130/G30593.1

    Article  ADS  CAS  Google Scholar 

  • Reijmer JG (2021) Marine carbonate factories: review and update. Sedimentology 68:1729–1796. https://doi.org/10.1111/sed.12878

    Article  Google Scholar 

  • Rogov MA (2010) New data on ammonites and stratigraphy of the Volgian Stage in Spitzbergen. Stratigr Geol Correl 18(5):505–531. https://doi.org/10.1134/S0869593810050047

    Article  ADS  Google Scholar 

  • Rogov MA (2014) An infrazonal ammonite biostratigraphy for the Kimmeridgian of Spitsbergen. Norw Petrol Direct Bull 11:153–165

    Google Scholar 

  • Rogov MA (2020) Infrazonal ammonite biostratigraphy, paleobiogeography and evolution of Volgian craspeditid ammonites. Paleontol J 54(10):1189–1219. https://doi.org/10.1134/S0031030120100068

    Article  Google Scholar 

  • Rogov MA, Ershova VB, Shchepetova EV, Zakharov VA, Pokrovsky BG, Khudoley AK (2017) Earliest Cretaceous (late Berriasian) glendonites from Northeast Siberia revise the timing of initiation of transient Early Cretaceous cooling in the high latitudes. Cretac Res 71:102–112. https://doi.org/10.1016/j.cretres.2016.11.011

    Article  Google Scholar 

  • Rogov MA, Zverkov NG, Zakharov VA, Arkhangelsky MS (2019) Marine reptiles and climates of the Jurassic and Cretaceous of Siberia. Stratigr Geol Correl 27:398–423. https://doi.org/10.1134/S0869593819040051

    Article  ADS  Google Scholar 

  • Rogov M, Shchepetova E, Zakharov V (2020) Late Jurassic–earliest Cretaceous prolonged shelf dysoxic–anoxic event and its possible causes. Geol Mag 157:1622–1642. https://doi.org/10.1017/S001675682000076X

    Article  ADS  CAS  Google Scholar 

  • Rogov M, Ershova V, Vereshchagin O, Vasileva K, Mikhailova K, Krylov A (2021) Database of global glendonite and ikaite records throughout the Phanerozoic. Earth Syst Sci Data 13:343–356. https://doi.org/10.5194/essd-13-343-2021

    Article  ADS  Google Scholar 

  • Rogov M, Zakharov V, Kiselev D (2023) Refined ammonite and bivalve biostratigraphy of the Agardhfjellet and lowermost Rurikfjellet formations (Bathonian–Ryazanian) of the Longyearbyen area, Spitsbergen. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 309(2):169–198. https://doi.org/10.1127/njgpa/2023/1158

    Article  Google Scholar 

  • Sandy MR, Hryniewicz K, Hammer Ø, Nakrem HA, Little CTS (2014) Brachiopods from Late Jurassic—Early Cretaceous hydrocarbon seep deposits, central Spitsbergen, Svalbard. Zootaxa. https://doi.org/10.11646/zootaxa.3884.6.1

  • Savard MM, Beauchamp B, Veizer J (1996) Significance of Aragonite Cements Around Cretaceous Marine Methane Seeps. J Sediment Res 66(3):430–438

    CAS  Google Scholar 

  • Schulz S, Matsuyama H, Conrad R (1997) Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiol Ecol 22(3):207–213. https://doi.org/10.1111/j.1574-6941.1997.tb00372.x

    Article  CAS  Google Scholar 

  • Shakirov R, Sorochinskaja AV, Yatsuk AV, Aksentov KI, Karabzov AA, Vovna VI, Osmushko IS, Korochentsev VV (2020) Ikaite in the methane anomaly zone on the continental slope of Japan. Bull Kamchatka Regional Assoc «Educ Sci Center» Earth Sci 46(2):72–84. https://doi.org/10.31431/1816-5524-2020-2-46-72-84

  • Śliwińska KK, Jelby ME, Grundvåg SA, Nøhr-Hansen H, Alsen P, Olaussen S (2020) Dinocyst stratigraphy of the Valanginian-Aptian Rurikfjellet and Helvetiafjellet formations on Spitsbergen, Arctic Norway. Geol Mag 157:1693–1714. https://doi.org/10.1017/S0016756819001249

    Article  ADS  CAS  Google Scholar 

  • Song H, Wignall PB, Song H, Dai X, Chu D (2019) Seawater temperature and dissolved oxygen over the past 500 million years. J Earth Sci 30(2):236–243. https://doi.org/10.1007/s12583-018-1002-2

    Article  CAS  Google Scholar 

  • Teichert BMA, Luppold FW (2013) Glendonites from an Early Jurassic methane seep—Climate or methane indicators? Palaeogeogr Palaeoclimatol Palaeoecol 390:81–93. https://doi.org/10.1016/j.palaeo.2013.03.001

    Article  Google Scholar 

  • Thiagarajan N, Crémière A, Blättler C, Lepland A, Kirsimäe K, Higgins J, Brunstad H, Eiler J (2020) Stable and clumped isotope characterization of authigenic carbonates in methane cold seep environments. Geochim Cosmochim Acta 279:204–219. https://doi.org/10.1016/j.gca.2020.03.015

    Article  ADS  CAS  Google Scholar 

  • Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO, Wood RA (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem Geol 438:146–162. https://doi.org/10.1016/j.chemgeo.2016.06.027

    Article  ADS  CAS  Google Scholar 

  • Vasileva KY, Rogov MA, Ershova VB, Pokrovsky BG (2019) New results of stable isotope and petrographic studies of Jurassic glendonites from Siberia. GFF 141:225–232. https://doi.org/10.1080/11035897.2019.1641549

    Article  CAS  Google Scholar 

  • Vasileva K, Vereshchagin O, Ershova V, Rogov M, Chernyshova I, Vishnevskaya I, Okuneva T, Pokrovsky B, Tuchkova M, Saphronova N, Kostrov Y, Khmarin E (2021) Marine diagenesis of ikaite: Implications from the isotopic and geochemical composition of glendonites and host concretions (Palaeogene–Neogene sediments, Sakhalin Island). Sedimentology 68:2227–2251. https://doi.org/10.1111/sed.12847

    Article  CAS  Google Scholar 

  • Vasileva K, Zaretskaya N, Ershova V, Rogov M, Stockli LD, Stockli D, Khaitov V, Maximov F, Chernyshova I, Soloshenko N, Frishman N, Panikorovsky T, Vereshchagin O (2022) New model for seasonal ikaite precipitation: evidence from White Sea glendonites. Mar Geol. https://doi.org/10.1016/j.margeo.2022.106820

    Article  Google Scholar 

  • Vickers ML, Price GD, Jerrett RM, Watkinson M (2016) Stratigraphic and geochemical expression of Barremian-Aptian global climate change in Arctic Svalbard. Geosphere 12:1594–1605. https://doi.org/10.1130/GES01344.1

    Article  ADS  Google Scholar 

  • Vickers M, Watkinson M, Price GD, Jerrett R (2018) An improved model for the ikaite-glendonite transformation: evidence from the Lower Cretaceous of Spitsbergen, Svalbard. Norsk Geologisk Tidsskrift. https://doi.org/10.17850/njg98-1-01

  • Vickers ML, Price GD, Jerrett RM, Sutton P, Watkinson MP, Fitzpatrick M (2019) The duration and magnitude of Cretaceous cool events: evidence from the northern high latitudes. Geol Soc Am Bull 131:1979–1994. https://doi.org/10.1130/B35074.1

    Article  CAS  Google Scholar 

  • Vickers ML, Vickers M, Rickaby REM, Wu H, Bernasconi SM, Ullmann CV, Bohrmann G, Spielhagen RF, Kassens H, Schultz PB, Alwmark C, Thibault N, Korte C (2022a) The ikaite to calcite transformation: Implications for palaeoclimate studies. Geochim Cosmochim Acta 334:201–216. https://doi.org/10.1016/j.gca.2022.08.001

    Article  ADS  CAS  Google Scholar 

  • Vickers ML, Vickers M, Rickaby REM, Wu H, Bernasconi SM, Ullmann CV, Bohrmann G, Spielhagen RF, Kassens H, Pagh Schultz B, Alwmark C, Thibault N, Korte C (2022b) The ikaite to calcite transformation: implications for palaeoclimate studies. Geochim Cosmochim Acta 334:201–216. https://doi.org/10.1016/j.gca.2022.08.001

    Article  ADS  CAS  Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565. https://doi.org/10.1016/S0016-7037(99)00400-7

    Article  ADS  CAS  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314. https://doi.org/10.1016/S0009-2541(99)00092-3

    Article  ADS  CAS  Google Scholar 

  • Wierzbowski A, Hryniewicz K, Hammer Ø, Nakrem HA, Little CTS (2011) Ammonites from hydrocarbon seep carbonate bodies from the uppermost Jurassic—lowermost Cretaceous of Spitsbergen and their biostratigraphical importance. Neues Jb Geol Paläontol Abh 262:267–288. https://doi.org/10.1127/0077-7749/2011/0198

    Article  Google Scholar 

  • Williscroft K, Grasby SE, Beauchamp B, Little CTS, Dewing K, Birgel D, Poulton T, Hryniewicz K (2017) Extensive Early Cretaceous (Albian) methane seepage on Ellef Ringnes Island, Canadian High Arctic. Geol Soc Am Bull 129:788–805. https://doi.org/10.1130/B31601.1

    Article  CAS  Google Scholar 

  • Zaitsev AV, Pokrovsky BG (2014) Carbon and oxygen isotope compositions of Lower-Middle Ordovician carbonate rocks in the northwestern Russian platform. Lithol Miner Resour 49:283–291. https://doi.org/10.1134/S0024490214030079

    Article  CAS  Google Scholar 

  • Zakharov VA (1981) Buchiids and biostratigraphy of the boreal Upper Jurassic and Neocomian. In: Saks VN (ed) Transactions of institute of geology and geophysics 458. Nauka, Moscow, pp 1–330

    Google Scholar 

  • Zakharov VA (1987) The Bivalve Buchia and the Jurassic-Cretaceous Boundary in the Boreal Province. Cretac Res 8:141-l53. https://doi.org/10.1016/0195-6671(87)90018-8

    Article  Google Scholar 

  • Zakharov VA, Rogov M (2003) Boreal-Tethyan Mollusk Migrations at the Jurassic-Cretaceous Boundary Time and Biogeographic Ecotone Position in the Northern Hemisphere. Stratigr Geol Correl 11(2):54–74

    Google Scholar 

  • Zakharov VA, Rogov MA, Bragin NY (2010) Mesozoic of the Russian Arctic: stratigraphy, paleogeography, paleoclimate. In: Leonov YG (ed) Russia's contribution to the International Polar Year 2007/08. Structure and development history of lithosphere. Paulsen Editions, Moscow–St. Petersburg, pp 331–383

Download references

Acknowledgements

The authors acknowledge the Resource Centre of X-ray diffraction studies of Saint-Petersburg State University for providing instrumental and computational resources. Mineralogical studies were supported by the Council for Grants of the President of the Russian Federation No. NSh-1462.2022.1.5 (for OV). Stratigraphic studies were supported by RSF grant no. 21-17-00245 (https://rscf.ru/project/21-17-00245/, for MR, KM. and VE). The authors thank Nikolay Zverkov (Geological Institute of RAS, Moscow) for preparation and photographing of figured bivalve specimens. We warmly thank our Norwegian colleagues (S. Olaussen, J. Hurum, and J. Holmlund) for their help during the field works. We are very grateful to Ulrich Riller, Editor-in-Chief of the International Journal of Earth Sciences, and to both reviewers, Bo P. Schultz and anonymous person, who contributed significantly to improve the quality of the manuscript. Special thanks to Dr. James Barnet for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vasileva.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasileva, K., Rogov, M., Ershova, V. et al. Ikaite versus seep-related carbonate precipitation in the Late Jurassic–Early Cretaceous of West Spitsbergen: evidence for cold versus warm climates?. Int J Earth Sci (Geol Rundsch) 113, 417–439 (2024). https://doi.org/10.1007/s00531-023-02380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02380-9

Keywords

Navigation