Skip to main content
Log in

Synthesis and characterization of the polymer brushes with alternated polyoxazoline side chains

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

An original approach to the synthesis of a new promising class of thermo-sensitive polymers, polymer brushes with regularly alternating grafted poly(2-alkyl-2-oxazoline) chains (PAOx), is proposed based on the "grafting through" scheme. At first, poly(2-alkyl-2-oxazoline) macro-monomers were obtained with styrene and maleimide terminal functions by the cationic ring-opening polymerization of 2-ethyl- and 2-isopropyl-2-oxazolines. Then, polymer brushes (PAOx-PB) with alternating-side polyoxazoline chains were synthesized via radical polymerization in chlorobenzene solution initiated by azobisisobutyronitrile. Reactivity ratios of the macro-monomers were determined by the Fineman–Ross (r1 = 0.013; r2 = 0.107) and the Kelen–Tüdős (r1 = 0.012; r2 = 0.105) methods, indicating that their copolymerization results in the formation of a polymer brush with an alternating sequence of macro-monomer units in the backbone. Molecular weight characteristics of obtained PAOx-PB were determined by means of size-exclusion chromatography and static light-scattering. The resulting PAOx-PB have unimodal molecular weight distribution, a rather low degree of polymerization of the main chain and the number of side chains in the range of fSC = 10–20. The structure and monomer content of synthesized PAOx-PB were studied using 1HNMR spectroscopy. It was shown that they have equivalent contents of PEtOx and PIPrOx side chains. The high intramolecular density of PAOx-PB macromolecules and, accordingly, the strong folding of the side chains was indicated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available as the Supplementary Information file.

References

  1. Philippova OE, Khokhlov AR (2010) Smart polymers for oil production. Petr Chem 50:266–270. https://doi.org/10.1134/S0965544110040031

    Article  Google Scholar 

  2. Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–7483. https://doi.org/10.1039/C2CS35191A

    Article  CAS  PubMed  Google Scholar 

  3. Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci 37:686–714. https://doi.org/10.1016/j.progpolymsci.2011.10.002

    Article  CAS  Google Scholar 

  4. Takahashi R, Sato T, Terao K, Qiu XP, Winnik FM (2012) Self-association of a thermosensitive poly(alkyl-2-oxazoline) block copolymer in aqueous solution. Macromolecules 45:6111–6119. https://doi.org/10.1021/ma300969w

    Article  CAS  Google Scholar 

  5. Vlassi E, Papagiannopoulos A, Pispas S (2017) Amphiphilic poly(2-oxazoline) copolymers as self-assembled carriers for drug delivery applications. Eur Polym J 88:516–523. https://doi.org/10.1016/j.eurpolymj.(2016).10.034

    Article  CAS  Google Scholar 

  6. Schulz A, Jaksch S, Schubel R, Wegener E, Di Z, Han Y, Meister A, Kressler J, Kabanov AV, Luxenhofer R, Papadakis CM, Jordan R (2014) Drug-induced morphology switch in drug delivery systems based on poly(2-oxazoline)s. ACS Nano 8:2686–2696. https://doi.org/10.1021/nn406388t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schenk V, Rossegger E, Ebner C, Bangerl F, Reichmann K, Hoffmann B, Höpfner M, Wiesbrock F (2014) RGD-functionalization of poly(2-oxazoline)-based networks for enhanced adhesion to cancer cells. Polymers 6:264–279. https://doi.org/10.3390/polym6020264

    Article  CAS  Google Scholar 

  8. Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun 31:511–525. https://doi.org/10.1002/marc.(2009)00683

    Article  CAS  PubMed  Google Scholar 

  9. Xie G, Martinez MR, Olszewski M, Sheiko SS, Matyjaszewski K (2019) Molecular bottlebrushes as novel materials. Biomacromol 20:27–54. https://doi.org/10.1021/acs.biomac.8b01171

    Article  CAS  Google Scholar 

  10. Banquy X, Burdyńska J, Lee DW, Matyjaszewski K, Israelachvili J (2014) Bioinspired bottle-brush polymer exhibits low friction and amontons-like behavior. J Am Chem Soc 136:6199–6202. https://doi.org/10.1021/ja501770y

    Article  CAS  PubMed  Google Scholar 

  11. Johnson JA, Lu YY, Burts AO, Xia Y, Durrell AC, Tirrell DA, Grubbs RH (2010) Drug-loaded bivalent-bottle-brush polymers by graft-through ROMP. Macromolecules 43:10326–10335. https://doi.org/10.1021/ma1021506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng W, Anzaldua M, Arora A, Jiang Y, McIntyre K, Doerfert M, Winter T, Mishra A, Ma H, Liang H (2020) Environmentally benign nanoantibiotics with a built-in deactivation switch responsive to natural habitats. Biomacromol 21:2187–2198. https://doi.org/10.1021/acs.biomac.0c00163

    Article  CAS  Google Scholar 

  13. Li X, Prukop SL, Biswal SL, Verduzco R (2012) Surface properties of bottlebrush polymer thin films. Macromolecules 45:7118–7127. https://doi.org/10.1021/ma301046n

    Article  CAS  Google Scholar 

  14. Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis characterization and properties. Prog Polym Sci 33:759–785. https://doi.org/10.1016/j.progpolymsci.2008.05.001

    Article  CAS  Google Scholar 

  15. Laroque S, Reifarth M, Sperling M, Kersting S, Klöpzig S, Budach P, Storsberg J, Hartlieb M (2020) Impact of multivalence and self-assembly in the design of polymeric antimicrobial peptide mimics. ACS Appl Mater Interfaces 12:30052–30065. https://doi.org/10.1021/acsami.0c05944

    Article  CAS  PubMed  Google Scholar 

  16. Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol Biosci 12:926–936. https://doi.org/10.1002/mabi.(2012)00026

    Article  CAS  PubMed  Google Scholar 

  17. Gieseler D, Jordan R (2015) Poly(2-Oxazoline) molecular brushes by grafting through of poly(2-oxazoline)methacrylates with aqueous ATRP. Polym Chem 6:4678–4689. https://doi.org/10.1039/C5PY00561B

    Article  CAS  Google Scholar 

  18. Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R (2018) Poly(2-oxazoline)s based biomaterials: a comprehensive and critical update. Biomaterials 178:204–280. https://doi.org/10.1016/j.biomaterials.2018.05.022

    Article  CAS  PubMed  Google Scholar 

  19. Kang J-J, Shehu K, Sachse C, Jung FA, Ko C-H, Barnsley LC, Jordan R, Papadakis CM (2021) A molecular brush with thermoresponsive poly(2-ethyl-2-oxazoline) side chains: a structural investigation. Colloid Polym Sci 299:193–203. https://doi.org/10.1007/s00396-020-04704-6

    Article  CAS  Google Scholar 

  20. Shimano Y, Sato K, Kobayashi S (1999) Reactivity in radical polymerization of poly(2-oxazoline) macromonomers. Polym J 31:219–225. https://doi.org/10.1295/polymj.31.219

    Article  CAS  Google Scholar 

  21. Kobayashi S, Kaku M, Sawada S, Saegusa T (1985) Synthesis of poly(2-methyl-2-oxazoline) macromers. Polym Bull 13:447–451. https://doi.org/10.1007/BF01033343

    Article  CAS  Google Scholar 

  22. Alvaradejo GG, Nguyen HVT, Harvey P, Gallagher NM, Le D, Ottaviani MF, Jasanoff A, Delaittre G, Johnson JA (2019) Polyoxazoline-based bottlebrush and brush-arm star polymers via ROMP: syntheses and applications as organic radical contrast agents. ACS Macro Lett 8:473–478. https://doi.org/10.1021/acsmacrolett.9b00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang N, Huber S, Schulz A, Luxenhofer R, Jordan R (2009) Cylindrical molecular brushes of poly(2-oxazoline)s from 2-isopropenyl-2-oxazoline. Macromolecules 42:2215–2221. https://doi.org/10.1021/ma802627y

    Article  CAS  Google Scholar 

  24. Jäger M, Schubert S, Ochrimenko S, Fischer D, Schubert US (2012) Branched and linear poly(ethylene imine)-based conjugates: synthetic modification characterization and application. Chem Soc Rev 41:4755–4767. https://doi.org/10.1039/C2CS35146C

    Article  PubMed  Google Scholar 

  25. Höbel S, Aigner A (2013) Polyethylenimines for siRNA and miRNA delivery in vivo. WIRES Nanomed Nanobi 5:484–501. https://doi.org/10.1002/wnan.1228

    Article  CAS  Google Scholar 

  26. Cook AB, Peltier R, Zhang J, Gurnani P, Tanaka J, Burns JA, Dallmann R, Hartlieb M, Perrier S (2019) Hyperbranched poly(ethylenimine-co-oxazoline) by thiol-yne chemistry for non-viral gene delivery: investigating the role of polymer architecture. Polym Chem 10:1202–1212. https://doi.org/10.1039/C8PY01648H

    Article  CAS  Google Scholar 

  27. Witte H, Seeliger W (1974) Formation of cyclic imidic esters by reaction of nitriles with amino alcohols. Justus Liebigs Ann Chem 1974:996–1009. https://doi.org/10.1002/jlac.197419740615

    Article  Google Scholar 

  28. Cremlyn R, Nunes R (1987) Reactions of N-(p-chlorosulfonylphenyl)maleimide. Phosphorus Sulfur Silicon Relat Elem 31:245–254. https://doi.org/10.1080/03086648708080643

    Article  CAS  Google Scholar 

  29. Kirila T, Amirova A, Blokhin A, Tenkovtsev A, Filippov A (2021) Features of solution behavior of polymer stars with arms of poly-2-alkyl-2-oxazolines copolymers grafted to the upper rim of calix[8]arene. Polymers 13:2507. https://doi.org/10.3390/polym13152507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grube M, Leiske MN, Schubert US, Nischang I (2018) POx as an alternative to PEG? a hydrodynamic and light scattering study. Macromolecules 51:1905–1916. https://doi.org/10.1021/acs.macromol.7b02665

    Article  CAS  Google Scholar 

  31. Kirila T, Smirnova A, Razina A, Tenkovtsev A, Filippov A (2020) Synthesis and conformational characteristics of thermosensitive star-shaped six-arm polypeptoids. Polymers 12:800. https://doi.org/10.3390/polym12040800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saegusa T, Kobayashi S, Yamada A (1976) Kinetics and mechanism of the isomerization polymerization of 2-methyl-2-oxazoline by benzyl chloride and bromide initiators. effect of halogen counteranions. Makromol Chem 177:2271–2283. https://doi.org/10.1002/macp.(1976).021770805

    Article  CAS  Google Scholar 

  33. Floyd TG, Häkkinen S, Hall SCL, Dalgliesh RM, Lehnen AC, Hartlieb M, Perrier S (2021) Cationic bottlebrush copolymers from partially hydrolyzed poly(oxazoline)s. Macromolecules 54:9461–9473. https://doi.org/10.1021/acs.macromol.1c01458

    Article  CAS  Google Scholar 

  34. Finkelstein H (1910) Darstellung organischer jodide aus den entsprechenden bromiden und chloriden. Ber Dtsch Chem Ges 43:1528–1532. https://doi.org/10.1002/cber.19100430257

    Article  CAS  Google Scholar 

  35. Hagiwara T, Suzuki I, Takeuchi K, Hamana H, Narita T (1991) Synthesis and polymerization of N-(4-vinylphenyl)maleimide. Macromolecules 24:6856–6858. https://doi.org/10.1021/ma00026a010

    Article  CAS  Google Scholar 

  36. Oishi T, Lee YK, Nakagawa A, Onimura K, Tsutsumi H (2001) Synthesis and polymerization of poly(N-Substituted maleimide) macromonomers. Polym J 33:81–88. https://doi.org/10.1295/polymj.33.81

    Article  CAS  Google Scholar 

  37. Kuroda S, Hagiwara T (2011) Synthesis and polymerization of maleimide-type new macromonomer with polystyrene having controlled chain length. Polymer 52:1869–1873. https://doi.org/10.1016/j.polymer.2011.03.015

    Article  CAS  Google Scholar 

  38. Liu Y-L, Wang Y-H (2004) Preparation and characterization of multifunctional maleimide macromonomers and their cured resins. J Polym Sci Part A Polym Chem 42:3178–3188. https://doi.org/10.1002/pola.20162

    Article  CAS  Google Scholar 

  39. Kurlykin MP, Razina AB, Ten’kovtsev AV (2015) The use of sulfonyl halides as initiators of cationic polymerization of oxazolines. Polym Sci Ser B 57:395–401. https://doi.org/10.1134/S1560090415050085

    Article  CAS  Google Scholar 

  40. Hoogenboom R, Fijten MWM, Schubert US (2004) Parallel kinetic investigation of 2-oxazoline polymerizations with different initiators as basis for designed copolymer synthesis. J Polym Sci Part A Polym Chem 42:1830–1840. https://doi.org/10.1002/pola.20024

    Article  CAS  Google Scholar 

  41. Bag S, Ghosh S, Paul S, Khan MEH, De P (2021) Styrene-maleimide/maleic anhydride alternating copolymers: recent advances and future perspectives. Macromol Rapid Commun 42:2100501. https://doi.org/10.1002/marc.(2021)00501

    Article  CAS  Google Scholar 

  42. Nakayama Y, Smets G (1967) Radical and anionic homopolymerization of maleimide and N-n-butylmaleimide. J Polym Sci Part A Polym Chem 5:1619–1633. https://doi.org/10.1002/pol.1967.150050712

    Article  CAS  Google Scholar 

  43. Hill DJT, Shao LY, Pomery PJ, Whittaker AK (2001) The radical homopolymerization of N-phenylmaleimide N-n-hexylmaleimide and N-cyclohexylmaleimide in tetrahydrofuran. Polymer 42:4791–4802. https://doi.org/10.1016/S0032-3861(00)00867-3

    Article  CAS  Google Scholar 

  44. Fineman M, Ross SD (1950) Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci 5:259–262. https://doi.org/10.1002/pol.(1950).120050210

    Article  CAS  Google Scholar 

  45. Kelen T, Tüdös F, Turcsányi B (1980) Confidence intervals for copolymerization reactivity ratios determined by the Kelen–Tüdös method. Polym Bull 2:71–76. https://doi.org/10.1007/BF00275556

    Article  CAS  Google Scholar 

  46. Hatada K, Terawaki Y, Kitayama T, Kamachi M, Tamaki M (1981) Studies on the radical polymerization of vinyl acetate in benzene chlorobenzene and ethyl acetate by 1HNMR spectroscopy. Polym Bull 4:451–458. https://doi.org/10.1007/BF00255700

    Article  CAS  Google Scholar 

  47. Chen C, Xu C, Zhai J, Ma Y, Zhao C, Yang W (2022) Solvent-free preparation of uniform styrene/maleimide copolymer microspheres from solid poly(styrene-alt-maleic anhydride) microspheres. Polym Chem 13:684–692. https://doi.org/10.1039/D1PY01540K

    Article  CAS  Google Scholar 

  48. Nishimori K, Sawamoto M, Ouchi M (2019) Design of maleimide monomer for higher level of alternating sequence in radical copolymerization with styrene. J Polym Sci Part A Polym Chem 57:367–375. https://doi.org/10.1002/pola.29191

    Article  CAS  Google Scholar 

  49. Geetha B, Mandal AB, Ramasami T (1993) Synthesis, characterization, and micelle formation in an aqueous solution of methoxypoly(ethy1ene glycol) macromonomer, homopolymer, and graft copolymer. Macromolecules 26:4083–4088. https://doi.org/10.1021/ma00068a002

    Article  CAS  Google Scholar 

  50. Gubarev AS, Monnery BD, Lezov AA, Sedlacek O, Tsvetkov NV, Hoogenboom R, Filippov SK (2018) Conformational properties of biocompatible poly(2-ethyl-2-oxazoline)s in phosphate buffered saline. Polym Chem 9:2232–2237. https://doi.org/10.1039/C8PY00255J

    Article  CAS  Google Scholar 

  51. Burchard W (1999). In: Roovers J (Ed.), Branched polymers II advances in polymer science. Springer, Berlin

  52. Pavlov GM, Korneeva EV, Meijer EW (2002) Molecular characteristics of poly(propylene imine) dendrimers as studied with translational diffusion and viscometry. Coll Polym Sci 280:416–423. https://doi.org/10.1007/s00396-001-0625-4

    Article  CAS  Google Scholar 

  53. Tsvetkov VN, Lavrenko PN, Bushin SV (1984) Hydrodynamic invariant of polymer molecules. J Polym Sci Polym Chem Ed 22:3447–3486. https://doi.org/10.1002/pol.(1984).170221160

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation, Grant number 23-23-00079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Nikolaevich Blokhin.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 158 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, A.N., Razina, A.B., Kirila, T.Y. et al. Synthesis and characterization of the polymer brushes with alternated polyoxazoline side chains. Iran Polym J 33, 581–595 (2024). https://doi.org/10.1007/s13726-023-01270-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01270-w

Keywords

Navigation