Skip to main content
Log in

Recurrent Symbiotic Nova T Coronae Borealis before Outburst

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The results of photometric and spectral observations of T CrB obtained in a wide range of wavelengths in 2011–2023 are presented. We use the near-IR light curves to determine a new ephemeris \(JD_{\textrm{min}}=2455828.9+227.55E\) for the times of light minima when the red giant is located between the observer and the hot component. The flux ratio H\(\alpha\)/H\(\beta\) varied from \({\sim}3\) to \({\sim}8\) in 2020–2023, which may be due to a change in the flux ratio between the X-ray and optical ranges. It is shown that the value of H\(\alpha\)/H\(\beta\) anticorrelates with the rate of accretion onto the hot component of the system. Based on high-speed follow-up observations obtained on June 8, 2023, we detected a variability of the He II \(\lambda 4686\) line with a characteristic time-scale of \({\sim}25\) min, the amplitude of variability in the \(B\)-band was \({\sim}0\overset{\textrm{m}}{.}07\). Simulations of the near-IR light curves accounting for the ellipsoidal effect allowed us to obtain the parameters of the binary system: the Roche lobe filling factor of the cool component \(\mu=1.0\), the mass ratio \(q=M_{\textrm{cool}}/M_{\textrm{hot}}\in[0.5,0.77]\), the orbital inclination \(i\in[55^{\circ},63^{\circ}]\). A comparison of the light curve obtained in 2005–2023 with the 1946 outburst template made it possible to predict the date of the upcoming outburst—January 2024.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

REFERENCES

  1. K. Belczynski, J. Mikolajewska, U. Munari, R. J. Ivison, and M. Friedjung, Astron. Astrophys. Suppl. Ser. 146, 407 (2000).

    Article  ADS  Google Scholar 

  2. L. N. Berdnikov, A. A. Belinskii, N. I. Shatskii, M. A. Burlak, N. P. Ikonnikova, E. O. Mishin, D. V. Cheryasov, and S. V. Zhuiko, Astron. Rep. 64, 310 (2020).

    Article  ADS  Google Scholar 

  3. A. Claret, Astron. Astrophys. 363, 1081 (2000).

    ADS  Google Scholar 

  4. F. C. Fekel, R. R. Joyce, K. H. Hinkle, and M. F. Skrutskie, Astron. J. 119, 1375 (2000).

    Article  ADS  Google Scholar 

  5. C. M. Gaskell and G. J. Ferland, Publ. Astron. Soc. Pacif. 96, 393 (1984).

    Article  ADS  Google Scholar 

  6. I. Hachisu and M. Kato, Astrophys. J. 517, L47 (1999).

    Article  ADS  Google Scholar 

  7. K. Ilkiewicz, J. Mikolajewska, K. Stoyanov, A. Manousakis, and B. Miszalski, Mon. Not. R. Astron. Soc. 462, 2695 (2016).

    Article  ADS  Google Scholar 

  8. H. L. Johnson, Commun. Lunar Planet. Labor. 3, 73 (1965).

    ADS  Google Scholar 

  9. J. A. Kennea, K. Mukai, J. L. Sokoloski, G. J. M. Luna, J. Tueller, C. B. Markwardt, and D. N. Burrows, Astrophys. J. 701, 1992 (2009).

    Article  ADS  Google Scholar 

  10. B. K. Kloppenborg, Observations from the AAVSO International Database. https://www.aavso.org. Accessed 2023.

  11. R. P. Kraft, Astrophys. J. 127, 625 (1958).

    Article  ADS  Google Scholar 

  12. N. P. Kuin, G. J. M. Luna, K. Page, K. Mukai, J. L. Sokoloski, J. P. Osborne, and B. E. Schaefer, Astron. Telegram 16114, 1 (2023).

    ADS  Google Scholar 

  13. L. B. Lucy, Zeitschr. Astrophys. 65, 89 (1967).

    ADS  Google Scholar 

  14. N. A. Maslennikova, A. M. Tatarnikov, and A. A. Tatarnikova, Astrophys. Bull. 78, 325 (2023).

    Article  ADS  Google Scholar 

  15. M. Minev, R. Zamanov, and K. Stoyanov, Astron. Telegram 16023, 1 (2023).

    ADS  Google Scholar 

  16. U. Munari, Res. Not. AAS 7, 145 (2023).

    Article  ADS  Google Scholar 

  17. NASA High Energy Astrophysics Science Archive Research Center (Heasarc), Astrophysics Source Code Library, ascl:1408.004 (2014).

  18. D. E. Osterbrock, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Sci. Books, 1989).

    Book  Google Scholar 

  19. A. J. Pickles, Publ. Astron. Soc. Pacif. 110, 863 (1998).

    Article  ADS  Google Scholar 

  20. S. A. Potanin, A. A. Belinskii, A. V. Dodin, S. G. Zheltoukhov, V. Yu. Lander, K. A. Postnov, A. D. Savvin, A. M. Tatarnikov et al., Astron. Lett. 46, 836 (2020).

    Article  ADS  Google Scholar 

  21. M. S. Pshirkov, A. V. Dodin, A. A. Belinski, S. G. Zheltoukhov, A. A. Fedoteva, O. V. Voziakova, S. A. Potanin, S. I. Blinnikov, et al., Mon. Not. R. Astron. Soc. 499, L21 (2020).

    Article  ADS  Google Scholar 

  22. P. W. A. Roming, T. E. Kennedy, K. O. Mason, J. A. Nousek, L. Ahr, R. E. Bingham, P. S. Broos, M. J. Carter, et al., Space Sci. Rev. 120, 95 (2005).

    Article  ADS  Google Scholar 

  23. B. E. Schaefer, Mon. Not. R. Astron. Soc. 524, 3146 (2023).

    Article  ADS  Google Scholar 

  24. T. Shahbaz, M. Somers, B. Yudin, and T. Naylor, Mon. Not. R. Astron. Soc. 288, 1027 (1997).

    Article  ADS  Google Scholar 

  25. A. I. Shapovalova, L. C. Popovic, V. L. Afanasiev, D. Ilic, A. Kovacevic, A. N. Burenkov, V. H. Chavushyan, S. Marceta-Mandic, et al., Mon. Not. R. Astron. Soc. 485, 4790 (2019).

    Article  ADS  Google Scholar 

  26. V. I. Shenavrin, O. G. Taranova, and A. E. Nadzhip, Astron. Rep. 55, 31 (2011).

    Article  ADS  Google Scholar 

  27. S. N. Shore, F. Teyssier, and ARAS Group, Astron. Telegram 15916, 1 (2023).

    ADS  Google Scholar 

  28. J. L. Sokoloski, L. Bildsten, and W. C. G. Ho, Mon. Not. R. Astron. Soc. 326, 553 (2001).

    Article  ADS  Google Scholar 

  29. V. Stanishev, R. Zamanov, N. Tomov, and P. Marziani, Astron. Astrophys. 415, 609 (2004).

    Article  ADS  Google Scholar 

  30. A. A. Tatarnikova, A. M. Tatarnikov, and V. I. Shenavrin, Proc. IAU 7, 203 (2013).

  31. S. A. Tjemkes, E. J. Zuiderwijk, and J. van Paradijs, Astron. Astrophys. 154, 77 (1986).

    ADS  Google Scholar 

  32. R. Tylenda, Acta Astron. 27, 235 (1977).

    ADS  Google Scholar 

  33. M. F. Walker, Proc. IAU 3, 46 (1957).

  34. J. Wu, Q. Wu, H. Xue, W. Lei, and B. Lyu, Astrophys. J. 950, 106 (2023).

    Article  ADS  Google Scholar 

  35. R. K. Zamanov and A. Bruch, Astron. Astrophys. 338, 938 (1998).

    ADS  Google Scholar 

  36. R. Zamanov, M. F. Bode, V. Stanishev, and J. Marti, Mon. Not. R. Astron. Soc. 350, 1477 (2004).

    Article  ADS  Google Scholar 

  37. R. Zamanov, A. Gomboc, M. F. Bode, J. M. Porter, and N. A. Tomov, Publ. Astron. Soc. Pacif. 117, 268 (2005).

    Article  ADS  Google Scholar 

  38. R. Zamanov, S. Boeva, S. Tsvetkova, and K. Stoyanov, Astron. Telegram 2586, 1 (2010).

    ADS  Google Scholar 

  39. R. Zamanov, E. Semkov, K. Stoyanov, and T. Tomov, Astron. Telegram 8675, 1 (2016).

    ADS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This study was performed by using the equipment purchased through the funds of the Development Program of the Moscow State University. The work of A.V. Dodin (initial reduction and calibration of spectra), A.M. Tatarnikov (reduction and analysis of UV and IR observations) and N.A. Maslennikova (data reduction and analysis of high-speed photometry, spectral modelling) was supported by Russian Science Foundation (grant no. 23-12-00092). We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. We thank the INES archive for providing access to the IUE data. This study has made use of the Swift data provided by the Space Science Data Center (ASI). The authors thank the anonymous referees for carefully reading the paper and providing very useful comments that have contributed to improving the quality of the manuscript.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Maslennikova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by the authors

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslennikova, N.A., Tatarnikov, A.M., Tatarnikova, A.A. et al. Recurrent Symbiotic Nova T Coronae Borealis before Outburst. Astron. Lett. 49, 501–515 (2023). https://doi.org/10.1134/S1063773723090037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723090037

Keywords:

Navigation