Skip to main content
Log in

Sex-Biased Transcription Expression of Vitellogenins Reveals Fusion Gene and MicroRNA Regulation in the Sea Louse Caligus rogercresseyi

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The caligid ectoparasite, Caligus rogercresseyi, is one of the main concerns in the Chilean salmon industry. The molecular mechanisms displayed by the parasite during the reproductive process represent an opportunity for developing novel control strategies. Vitellogenin is a multifunctional protein recognized as a critical player in several crustaceans’ biological processes, including reproduction, embryonic development, and immune response. This study aimed to characterize the C. rogercresseyi vitellogenins, including discovering novel transcripts and regulatory mechanisms associated with microRNAs. Herein, vitellogenin genes were identified by homology analysis using the reference sea louse genome, transcriptome database, and arthropods vitellogenin-protein database. The validation of expression transcripts was conducted by RNA nanopore sequencing technology. Moreover, fusion gene profiling, miRNA target analysis, and functional validation were performed using luciferase assay. Six putative vitellogenin genes were identified in the C. rogercresseyi genome with high homology with other copepods vitellogenins. Furthermore, miR-996 showed a putative role in regulating the Cr_Vitellogenin1 gene, which is highly expressed in females. Moreover, vitellogenin-fusion genes were identified in adult stages and highly regulated in males, demonstrating sex-related expression patterns. In females, the identified fusion genes merged with several non-vitellogenin genes involved in biological processes of ribosome assembly, BMP signaling pathway, and biosynthetic processes. This study reports the genome array of vitellogenins in C. rogercresseyi for the first time, revealing the putative role of fusion genes and miRNA regulation in sea lice biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

This study did not report any data.

References

  • Akiva P, Toporik A, Edelheit S, Peretz Y, Diber A, Shemesh R, Novik A, Sorek R (2006) Transcription-mediated gene fusion in the human genome. Genome Res 16:30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33:3387–3395

    Article  PubMed  Google Scholar 

  • Amdam GV, Norberg K, Page RE Jr, Erber J, Scheiner R (2006) Downregulation of vitellogenin gene activity increases the gustatory responsiveness of honey bee workers (Apis mellifera). Behav Brain Res 169:201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Can Res 64:5245–5250

    Article  CAS  Google Scholar 

  • Annala M, Parker B, Zhang W, Nykter M (2013) Fusion genes and their discovery using high throughput sequencing. Cancer Lett 340:192–200

    Article  CAS  PubMed  Google Scholar 

  • Attardo GM, Hansen IA, Raikhel AS (2005) Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol 35:661–675

    Article  CAS  PubMed  Google Scholar 

  • Belles X (2005) Vitellogenesis directed by juvenile hormone. Reproductive Biology of Invertebrates 12:157–197

    CAS  Google Scholar 

  • Blank S, Seismann H, Mcintyre M, Ollert M, Wolf S, Bantleon FI, Spillner E (2013) Vitellogenins Are New High Molecular Weight Components and Allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris Venom. Plos One, 8. https://doi.org/10.1371/journal.pone.0062009

  • Burka JF, Fast MD, Revie CW (2012) 22 Lepeophtheirus salmonis and Caligus rogercresseyi. Fish Parasites 350

  • Chen S, Chen D-F, Yang F, Nagasawa H, Yang W-J (2011) Characterization and processing of superoxide dismutase-fused vitellogenin in the diapause embryo formation: a special developmental pathway in the brine shrimp, Artemia parthenogenetica. Biol Reprod 85:31–41

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Colaianni D, De Pittà C (2022) The role of microRNAs in the drosophila melanogaster visual system. Front Cell Dev Biol 10

  • Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, Robinson GE (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci 104:7128–7133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona M, Libbrecht R, Wurm Y, Riba-Grognuz O, Studer RA, Keller L (2013) Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet 9:e1003730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Theobard R, Cheng H, Xing M, Zhang J (2018) Fusion genes: a promising tool combating against cancer. Biochimica et Biophysica Acta (BBA)-Rev Cancer 1869:149–160

  • Dalvin S, Frost P, Loeffen P, Skern-Mauritzen R, Baban J, Rønnestad I, Nilsen F (2011) Characterisation of two vitellogenins in the salmon louse Lepeophtheirus salmonis: molecular, functional and evolutional analysis. Dis Aquat Org 94:211–224

    Article  CAS  Google Scholar 

  • De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris M-J, Basinko A, De Braekeleer M (2012) ETV6 fusion genes in hematological malignancies: a review. Leuk Res 36:945–961

    Article  PubMed  Google Scholar 

  • Dresdner J, Chávez C, Quiroga M, Jiménez D, Artacho P, Tello A (2019) Impact of Caligus treatments on unit costs of heterogeneous salmon farms in Chile. Aquac Econ Manag 23:1–27

    Article  Google Scholar 

  • Duan H, De Navas LF, Hu F, Sun K, Mavromatakis YE, Viets K, Zhou C, Kavaler J, Johnston RJ, Tomlinson A (2018) The mir-279/996 cluster represses receptor tyrosine kinase signaling to determine cell fates in the Drosophila eye. Development 145:dev159053

  • Eichner C, Frost P, Dysvik B, Jonassen I, Kristiansen B, Nilsen F (2008) Salmon louse (Lepeophtheirus salmonis) transcriptomes during post molting maturation and egg production, revealed using EST-sequencing and microarray analysis. BMC Genomics 9:1–15

    Article  Google Scholar 

  • Engelmann F (1979) Insect vitellogenin: identification, biosynthesis, and role in vitellogenesis. Adv Insect Physiol Elsevier

  • Fallon AM, Hagedorn H, Wyatt G, Laufer H (1974) Activation of vitellogenin synthesis in the mosquito Aedes aegypti by ecdysone. J Insect Physiol 20:1815–1823

    Article  CAS  PubMed  Google Scholar 

  • Farlora R, Araya-Garay J, Gallardo-Escárate C (2014) Discovery of sex-related genes through high-throughput transcriptome sequencing from the salmon louse Caligus rogercresseyi. Mar Genomics 15:85–93

    Article  PubMed  Google Scholar 

  • Gallardo-Escárate C, Valenzuela-Muñoz V, Nuñez-Acuña G (2014) RNA-Seq analysis using de novo transcriptome assembly as a reference for the salmon louse Caligus rogercresseyi. PLoS ONE 9:e92239

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallardo-Escárate C, Valenzuela-Muñoz V, Boltaña S, Nuñez-Acuña G, Valenzuela-Miranda D, Gonçalves A, Détrée C, Tarifeño-Saldivia E, Farlora R, Roberts S (2017) The Caligus rogercresseyi miRNome: discovery and transcriptome profiling during the sea lice ontogeny. Agri Gene 4:8–22

    Article  Google Scholar 

  • Gallardo-Escárate C, Arriagada G, Carrera C, Gonçalves AT, Nuñez-Acuña G, Valenzuela-Miranda D, Valenzuela-Muñoz V (2019) The race between host and sea lice in the Chilean salmon farming: a genomic approach. Rev Aquac 11:325–339

    Article  Google Scholar 

  • Gallardo-Escárate C, Valenzuela-Muñoz V, Nuñez-Acuña G, Valenzuela-Miranda D, Gonçalves AT, Escobar-Sepulveda H, Liachko I, Nelson B, Roberts S, Warren W (2021) Chromosome-scale genome assembly of the sea louse Caligus rogercresseyi by SMRT sequencing and Hi-C analysis. Scientific Data 8:1–12

    Article  Google Scholar 

  • García J, Munro ES, Monte MM, Fourrier MCS, Whitelaw J, Smail DA, Ellis AE (2010) Atlantic salmon (Salmo salar L.) serum vitellogenin neutralises infectivity of infectious pancreatic necrosis virus (IPNV). Fish Shellfish Immunol 29:293–297

    Article  PubMed  Google Scholar 

  • Grzesiuk M, Mielecki D, Pilżys T, Garbicz D, Marcinkowski M, Grzesiuk E (2018) How cyclophosphamide at environmentally relevant concentration influences Daphnia magna life history and its proteome. PLoS ONE 13:e0195366. https://doi.org/10.1371/journal.pone.0195366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagedorn H, Kunkel J (1979) Vitellogenin and vitellin in insects. Annu Rev Entomol 24:475–505

    Article  CAS  Google Scholar 

  • Hao J, Luo J, Chen Z, Ren Q, Guo J, Liu X, Chen Q, Wu F, Wang Z, Luo J (2017) MicroRNA-275 and its target vitellogenin-2 are crucial in ovary development and blood digestion of Haemaphysalis longicornis. Parasit Vectors 10:1–9

    Article  Google Scholar 

  • Harwood G, Amdam G (2021) Vitellogenin in the honey bee midgut. Apidologie 52:837–847

    Article  CAS  Google Scholar 

  • Huang Y-C, Smith L, Poulton J, Deng W-M (2013) The microRNA miR-7 regulates Tramtrack69 in a developmental switch in Drosophila follicle cells. Development 140:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iovino N, Pane A, Gaul U (2009) miR-184 has multiple roles in Drosophila female germline development. Dev Cell 17:123–133

    Article  CAS  PubMed  Google Scholar 

  • Kanoria S, Rennie W, Liu C, Carmack CS, Lu J, Ding Y (2016) STarMir tools for prediction of microRNA binding sites. RNA Structure Determination. Methods Protoc 73–82

  • Kato Y, Tokishita S-I, Ohta T, Yamagata H (2004) A vitellogenin chain containing a superoxide dismutase-like domain is the major component of yolk proteins in cladoceran crustacean Daphnia magna. Gene 334:157–165

    Article  CAS  PubMed  Google Scholar 

  • Kavaler J, Duan H, Aradhya R, De Navas LF, Joseph B, Shklyar B, Lai EC (2018) miRNA suppression of a Notch repressor directs non-neuronal fate in Drosophila mechanosensory organs. J Cell Biol 217:571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeier P, Feldmeyer B, Foitzik S (2018) Vitellogenin-like A–associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol 16:e2005747

    Article  PubMed  PubMed Central  Google Scholar 

  • Komazaki S, Hiruma T (1999) Degradation of yolk platelets in the early amphibian embryo is regulated by fusion with late endosomes. Dev Growth Differ 41:173–181

    Article  CAS  PubMed  Google Scholar 

  • Kristoffersen BA, Nerland A, Nilsen F, Kolarevic J, Finn RN (2009) Genomic and proteomic analyses reveal non-neofunctionalized vitellogenins in a basal clupeocephalan, the Atlantic herring, and point to the origin of maturational yolk proteolysis in marine teleosts. Mol Biol Evol 26:1029–1044

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Yoon HJ, Jin BR (2015) O smia cornifrons vitellogenin: c DNA cloning, structural analysis and developmental expression. Entomol Res 45:94–101

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang S, Liu Q (2008) Vitellogenin functions as a multivalent pattern recognition receptor with an opsonic activity. PLoS ONE 3:e1940

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang S, Zhang J, Liu M, Liu Z (2009) Vitellogenin is a cidal factor capable of killing bacteria via interaction with lipopolysaccharide and lipoteichoic acid. Mol Immunol 46:3232–3239

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li XJ, Wu YM, Yang L, Li W, Wang Q (2017) Vitellogenin regulates antimicrobial responses in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol 69:6–14

    Article  CAS  PubMed  Google Scholar 

  • Liu Q-H, Zhang S-C, Li Z-J, Gao C-R (2009) Characterization of a pattern recognition molecule vitellogenin from carp (Cyprinus carpio). Immunobiology 214:257–267

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Qiao X, Yu S, Li Y, Wu S, Liu J, Wang L, Song L (2023) The DUF1943 and VWD domains endow Vitellogenin from Crassostrea gigas with the agglutination and inhibition ability to microorganism. Dev Comp Immunol 143:104679

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

  • Lu TX, Rothenberg ME (2018) MicroRNA. J Aller Clin Immunol 141:1202–1207

    Article  CAS  PubMed  Google Scholar 

  • Lucas KJ, Roy S, Ha J, Gervaise AL, Kokoza VA, Raikhel AS (2015) MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. Proc Natl Acad Sci 112:1440–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin D, Piulachs M, Bellés X (1996) Inhibition of vitellogenin production by allatostatin in the German cockroach. Mol Cell Endocrinol 121:191–196

    Article  CAS  PubMed  Google Scholar 

  • Martı́N, D., Wang, S.-F. & Raikhel, A.S. (2001) The vitellogenin gene of the mosquito Aedes aegypti is a direct target of ecdysteroid receptor. Mol Cell Endocrinol 173:75–86

    Article  PubMed  Google Scholar 

  • Menzel P, Mccorkindale AL, Stefanov SR, Zinzen RP, Meyer IM (2019) Transcriptional dynamics of microRNAs and their targets during Drosophila neurogenesis. RNA Biol 16:69–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Minniti G, Hagen LH, Porcellato D, Jørgensen SM, Pope PB, Vaaje-Kolstad G (2017) The skin-mucus microbial community of farmed Atlantic salmon (Salmo salar). Front Microbiol 8:2043

    Article  PubMed  PubMed Central  Google Scholar 

  • Morandin C, Hietala A, Helanterä H (2019) Vitellogenin and vitellogenin-like gene expression patterns in relation to caste and task in the ant Formica fusca. Insectes Soc 66:519–531

    Article  Google Scholar 

  • Nelson CM, Ihle KE, Fondrk MK, Page RE Jr, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5:e62

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen H, Tsirigos KD, Brunak S, Von Heijne G (2019) A brief history of protein sorting prediction. Protein J 38:200–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan M, Bell WJ, Telfer WH (1969) Vitellogenic blood protein synthesis by insect fat body. Science 165:393–394

    Article  CAS  PubMed  Google Scholar 

  • Park HG, Lee KS, Kim BY, Yoon HJ, Choi YS, Lee KY, Wan H, Li J, Jin BR (2018) Honeybee (Apis cerana) vitellogenin acts as an antimicrobial and antioxidant agent in the body and venom. Dev Comp Immunol 85:51–60

    Article  CAS  PubMed  Google Scholar 

  • Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi MI, Bork P, Bridge A, Colwell L, Gough J, Haft DH, Letunić I, Marchler-Bauer A, Mi H, Natale DA, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A (2022) InterPro in 2022. Nucleic Acids Res 51:D418–D427

    Article  PubMed Central  Google Scholar 

  • Raikhel AS (2005) Reproductive biology of invertebrates, Part B: Progress in vitellogenesis: CRC Press 12

  • Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards M (2019) Vitellogenin and vitellogenin-like genes: not just for egg production. Insectes Soc 66:505–506

    Article  Google Scholar 

  • Roy S, Saha TT, Zou Z, Raikhel AS (2018) Regulatory pathways controlling female insect reproduction. Annu Rev Entomol 63:489–511

    Article  CAS  PubMed  Google Scholar 

  • Salmela H, Amdam GV, Freitak D (2015) Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLoS Pathog 11:e1005015

    Article  PubMed  PubMed Central  Google Scholar 

  • Salmela H, Stark T, Stucki D, Fuchs S, Freitak D, Dey A, Kent CF, Zayed A, Dhaygude K, Hokkanen H (2016) Ancient duplications have led to functional divergence of vitellogenin-like genes potentially involved in inflammation and oxidative stress in honey bees. Genome Biol Evol 8:495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sappington TW, Raikhel AS (1998) Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol 28:277–300

    Article  CAS  PubMed  Google Scholar 

  • Seehuus S-C, Norberg K, Gimsa U, Krekling T, Amdam GV (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci 103:962–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Jacobs-Lorena M (1999) Evolution of chitin-binding proteins in invertebrates. J Mol Evol 48:341–347

    Article  CAS  PubMed  Google Scholar 

  • Shi XD, Zhang SC, Pang QX (2006) Vitellogenin is a novel player in defense reactions. Fish Shellfish Immunol 20:769–772

    Article  CAS  PubMed  Google Scholar 

  • Sigrist CJ, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2012) New and continuing developments at PROSITE. Nucleic Acids Res 41:D344–D347

    Article  PubMed  PubMed Central  Google Scholar 

  • Snigirevskaya ES, Raikhel AS (2005) Receptor-mediated endocytosis of yolk proteins in insect oocytes. Prog Vitellogenesis Reprod Biol Invertebr 12:199–228

    CAS  Google Scholar 

  • Song J, Zhou S (2020) Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell Mol Life Sci 77:1893–1909

    Article  CAS  PubMed  Google Scholar 

  • Song J, Guo W, Jiang F, Kang L, Zhou S (2013) Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria. Insect Biochem Mol Biol 43:879–887

    Article  CAS  PubMed  Google Scholar 

  • Song J, Li W, Zhao H, Gao L, Fan Y, Zhou S (2018) The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Krüppel-homolog 1. Development 145:dev170670

  • Spieth J, Macmorris M, Broverman S, Greenspoon S, Blumenthal T (1988) Regulated expression of a vitellogenin fusion gene in transgenic nematodes. Dev Biol 130:285–293

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Jee D, De Navas LF, Duan H, Lai EC (2015) Multiple in vivo biological processes are mediated by functionally redundant activities of Drosophila mir-279 and mir-996. PLoS Genet 11:e1005245

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Li H, Zhao Y, Bai L, Qin Y, Wang Q, Li W (2021) Distinct vitellogenin domains differentially regulate immunological outcomes in invertebrates. J Biol Chem 296

  • Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6:e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR—Publishing data that conform to the MIQE guidelines. Methods 50:S1–S5

    Article  CAS  PubMed  Google Scholar 

  • Telfer WH (1954) Immunological studies of insect metamorphosis: II. The role of a sex-limited blood protein in egg formation by the cecropia silkworm. J Gen Physiol 37:539–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tufail M, Takeda M (2008) Molecular characteristics of insect vitellogenins. J Insect Physiol 54:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Tufail M, Raikhel AS, Takeda M (2005) Biosynthesis and processing of insect vitellogenins. Prog Vitellogenesis Reprod Biol Invertebr 12:1–32

    CAS  Google Scholar 

  • Tufail M, Nagaba Y, Elgendy AM, Takeda M (2014) Regulation of vitellogenin genes in insects. Entomol Sci 17:269–282

    Article  Google Scholar 

  • Vandegehuchte MB, Vandenbrouck T, Coninck DD, De Coen WM, Janssen CR (2010) Can metal stress induce transferable changes in gene transcription in Daphnia magna? Aquat Toxicol 97:188–195

    Article  CAS  PubMed  Google Scholar 

  • Verderame M, Scudiero R (2017) Estrogen - dependent, extrahepatic synthesis of vitellogenin in male vertebrates: A mini-review. C R Biol 340:139–144

    Article  PubMed  Google Scholar 

  • Vilmos P, Bujna Á, Szuperák M, Havelda Z, Várallyay É, Szabad J, Kucerova L, Somogyi K, Kristó I, Lukácsovich T (2013) Viability, longevity, and egg production of Drosophila melanogaster are regulated by the miR-282 microRNA. Genetics 195:469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrinda S, Jasmin C, Sivakumar K, Jose S, Jose B, Philip R, Is BS (2017) Regulating gonad inhibition and vitellogenin/vitellin induction in Penaeus monodon using mature GIH fusion protein and polyclonal antisera. Comp Biochem Physiol a: Mol Integr Physiol 203:167–178

    Article  Google Scholar 

  • Wang Y, Brent CS, Fennern E, Amdam GV (2012) Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS Genet 8:e1002779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Liu Z, Zhou L, Ji G, Yang A (2015) Molecular cloning, expression, purification and characterization of vitellogenin in scallop Patinopecten yessoensis with special emphasis on its antibacterial activity. Dev Comp Immunol 49:249–258

    Article  CAS  PubMed  Google Scholar 

  • Wyatt GR, Davey KG (1996) Cellular and molecular actions of juvenile hormone. II. Roles of juvenile hormone in adult insects. Adv Insect Physiol 26:1–155

    Article  CAS  Google Scholar 

  • Yamagami T, Funatsu G (1996) Limited proteolysis and reduction-carboxymethylation of rye [Secale cereale] seed chitinase-a: Role of the chitin-binding domain in its chitinase action. Biosci Biotechnol Biochem (Japan) 60

  • Yang J, Annala M, Ji P, Wang G, Zheng H, Codgell D, Du X, Fang Z, Sun B, Nykter M (2014) Recurrent LRP1-SNRNP25 and KCNMB4-CCND3 fusion genes promote tumor cell motility in human osteosarcoma. J Hematol Oncol 7:1–10

    Article  Google Scholar 

  • Yang YN, Zheng B, Bao C, Huang H, Ye H (2016) Vitellogenin2: spermatozoon specificity and immunoprotection in mud crabs. Reproduction 152:235–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC, Sun YN, Pang QX, Shi XD (2005) Hemagglutinating and antibacterial activities of vitellogenin. Fish Shellfish Immunol 19:93–95

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Dong Y, Cui P (2015) Vitellogenin is an immunocompetent molecule for mother and offspring in fish. Fish Shellfish Immunol 46:710–715

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Lu Y, Zheng H, Liu H, Li S (2016) Differential immune response of vitellogenin gene to Vibrio anguillarum in noble scallop Chlamys nobilis and its correlation with total carotenoid content. Fish Shellfish Immunol 50:11–15

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Aksoy E, Girke T, Raikhel AS, Karginov FV (2017) Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of Aedes aegypti. Proc Natl Acad Sci 114:E1895–E1903

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

ANID-Chile funded this study through the grants FONDECYT (#1210852) and FONDAP-ANID #1523A0007.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.C., V.V.-M. and C.G.-E.; methodology, A.C., B.P.B, V.V.-M. and C.G.-E.; formal analysis, A.C., V.V.-M. and C.C.-N.; writing—original draft preparation, A.C.; writing—review and editing, A.C., B.P.B, Y.L, V.V.-M. and C.G.-E.. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Cristian Gallardo-Escárate.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Institutional Review Board

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casuso, A., Benavente, B.P., Leal, Y. et al. Sex-Biased Transcription Expression of Vitellogenins Reveals Fusion Gene and MicroRNA Regulation in the Sea Louse Caligus rogercresseyi. Mar Biotechnol 26, 243–260 (2024). https://doi.org/10.1007/s10126-024-10291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-024-10291-2

Keywords

Navigation