Skip to main content
Log in

Development of introgression lines and mapping of qGW2, a novel QTL that confers grain width, in rice (Oryza sativa L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Rice grain size is a key determinant of both grain yield and quality. Identification of favorable alleles for use in rice breeding may help to meet the demand for increased yield. In this study, we developed a set of 210 introgression lines (ILs) by using indica variety Huanghuazhan as the donor parent and erect-panicle japonica rice variety Wuyujing3R as the recurrent parent. A total of 133 ILs were selected for high-throughput sequencing. Using specific-locus amplified fragment (SLAF) sequencing technology, 10,103 high-quality SLAF labels evenly distributed on 12 chromosomes were obtained and selected for subsequent analysis. Using a high-density map, quantitative trait locus (QTL) mapping of grain size-related traits was performed, and a total of 38 QTLs were obtained in two environments. Furthermore, qGW2, a novel QTL that controls grain width on chromosome 2, was validated and delimited to a region of 309 kb via substitution mapping. These findings provide new genetic material and a basis for future fine mapping and cloning of favorable QTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Supplementary information is available for this paper. Correspondence and requests for materials and data should be addressed to H.Z.

Code availability

Not applicable.

References

  • Ando T, Yamamoto T, Shimizu T, Ma XF, Shomura A, Takeuchi Y, Lin SY, Yano M (2008) Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor Appl Genet 116:881–890

    Article  PubMed  Google Scholar 

  • Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu XY, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding XP, Li XK, Xiong LH (2011) Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice. Theor Appl Genet 123:815–826

    Article  PubMed  Google Scholar 

  • Dong ZY, Wang HY, Dong YZ, Wang YM, Liu W, Miao GJ, Lin XY, Wang DQ, Liu B (2013) Extensive microsatellite variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Plos One 8:e62317

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari.’ Breed Sci 55:65–73

    Article  CAS  Google Scholar 

  • Fan CH, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhang X, Lan H, Huang J, Wang J, Zhang H (2015) The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. Bmc Plant Biol 15:1–13

    Article  Google Scholar 

  • Gao Q, Zhang N, Wang W-Q, Shen S-Y, Bai C, Song X-J (2021) The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice. Plant Cell 33:3331–3347

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu JF, Yin XY, Struik PC, Stomph TJ, Wang HQ (2012) Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot 63:455–469

    Article  CAS  PubMed  Google Scholar 

  • Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar HE, Zhuang JY, Zheng KL, Liu GF, Wang GC, Sidhu JS, Srivantaneeyakul S, Singh VP, Bagali PG, Prasanna HC, McLaren G, Khush GS (2003) Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107:679–690

    Article  PubMed  Google Scholar 

  • Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455–1465

    Article  CAS  PubMed  Google Scholar 

  • Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, Guan JP, Fan DL, Weng QJ, Huang T, Dong GJ, Sang T, Han B (2009a) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009b) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B-i, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2013) Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed 132:433–436

    Article  CAS  Google Scholar 

  • Kubo T, Yoshimura A (2002) Genetic basis of hybrid breakdown in a japonica/indica cross of rice, Oryza sativa L. Theor Appl Genet 105:906–911

    Article  CAS  PubMed  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Li YH (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32

    Article  PubMed  Google Scholar 

  • Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li RQ, Li YR, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Liu TM, Mao DH, Zhang SP, Xu CG, Xing YZ (2009) Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet 118:1509–1517

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wei X, Sheng Z, Jiao G, Tang S, Luo J, Hu P (2016) Polycomb protein OsFIE2 affects plant height and grain yield in rice. PLoS ONE 11(10):e0164748

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Zhang X, Li Q, Xiao Y, Zhang G, Yin W, Niu M, Meng W, Dong N, Liu J, Yang Y, Xie Q, Chu C, Tong H (2023) The U-box ubiquitin ligase TUD1 promotes brassinosteroid-induced GSK2 degradation in rice. Plant Commun 4(2):100450

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Cooperative RG (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • Monna L, Lin HX, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:772–778

    Article  CAS  PubMed  Google Scholar 

  • Qi P, Lin Y-S, Song X-J, Shen J-B, Huang W, Shan J-X, Zhu M-Z, Jiang L, Gao J-P, Lin H-X (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res 22:1666–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel PN, Brondani RPV, Rangel PHN, Brondani C (2008) Agronomic and molecular characterization of introgression lines from the interspecific cross Oryza sativa (BG90-2) x Oryza glumaepatula (RS-16). Genet Mol Res 7:184–195

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Rao Y, Wu L, Xu Q, Li Z, Yu H, Zhang Y, Leng Y, Hu J, Zhu L, Gao Z, Dong G, Zhang G, Guo L, Zeng D, Qian Q (2016) The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice. J Integr Plant Biol 58(6):529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  PubMed  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447

    Article  CAS  PubMed  Google Scholar 

  • Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007a) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007b) A QTL for rice grain width and weight encodes a previously unknown RING-type EU ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, Guan N, Ma CX, Zeng HP, Xu CH, Song J, Huang L, Wang CM, Shi JJ, Wang R, Zheng XH, Lu CY, Wang XW, Zheng HK (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. Plos One 8:e58700

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun SY, Wang L, Mao HL, Shao L, Li XH, Xiao JH, Ouyang YD, Zhang QF (2018) A G-protein pathway determines grain size in rice. Nat Commun 9:851

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Takai T, Nonoue Y, Yamamoto SI, Yamanouchi U, Matsubara K, Liang ZW, Lin HX, Ono N, Uga Y, Yano M (2007) Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar ‘Nona bokra’ and japonica recipient cultivar ‘Koshihikari.’ Breed Sci 57:257–261

    Article  Google Scholar 

  • Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950

    Article  CAS  PubMed  Google Scholar 

  • Wang SK, Li S, Liu Q, Wu K, Zhang JQ, Wang SS, Wang Y, Chen XB, Zhang Y, Gao CX, Wang F, Huang HX, Fu XD (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Hou Q, Si L, Huang X, Luo J, Lu D, Zhu J, Shangguan Y, Miao J, Xie Y, Wang Y, Zhao Q, Feng Q, Zhou C, Li Y, Fan D, Lu Y, Tian Q, Wang Z, Han B (2019) The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiol 180:2077–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ (2006) Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 49:476–484

    Article  CAS  PubMed  Google Scholar 

  • Xu FF, Huang Y, Bao JS (2015) Identification of QTLs for agronomic traits in indica rice using an RIL population. Genes Genom 37:809–817

    Article  CAS  Google Scholar 

  • Zhang H, Zhao Q, Sun ZZ, Zhang CQ, Feng Q, Tang SZ, Liang GH, Gu MH, Han B, Liu QQ (2011) Development and high-throughput genotyping of substitution lines carring the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics 38:603–611

    Article  CAS  PubMed  Google Scholar 

  • Zhang DP, Zhou Y, Yin JF, Yan XJ, Lin S, Xu WF, Baluška F, Wang YP, Xia YJ, Liang GH, Liang JS (2015) Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation. J Exp Bot 66(20):6371–6384

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhu YJ, Zhu AD, Fan YY, Huang TX, Zhang JF, Xie HA, Zhuang JY (2020a) Fine-mapping of qTGW2, a quantitative trait locus for grain weight in rice (Oryza sativa L.). PeerJ 8:e8679

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Wang S, Sun S, Zhang Y, Li J, You J, Su T, Chen W, Ling Y, He G, Zhao F (2020b) Analysis of QTL for grain size in a rice chromosome segment substitution line Z1392 with long grains and fine mapping ofqGL-6. Rice 13:1–11

    Article  Google Scholar 

  • Zhao DS, Li QF, Zhang CQ, Zhang C, Yang QQ, Pan LX, Ren XY, Lu J, Gu MH, Liu QQ (2018) GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun 9:1240

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Zhu JY, Niu YC, Tao YJ, Wang J, Jian JB, Tai SS, Li J, Yang J, Zhong WG, Zhou Y, Liang GH (2015) Construction of high-throughput genotyped chromosome segment substitution lines in rice (Oryza sativa L.) and QTL mapping for heading date. Plant Breed 134:156–163

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Key R&D Program of China (2023YFD1200904), Jiangsu Key R&D Program (BE2021301), Jiangsu Agriculture Science and Technology Innovation Fund (CX (23)3093), The Zhongshan Biological Breeding Laboratory (BM2022008-03), The open funds of the Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding (NO.PL202303), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Science and technology planning project of Nantong City, Jiangsu Province (MS12019064).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. conceived the study; X.Z, Z.X, and Y.C performed the experiments and analyzed the data with the assistance of Y.D, M.L, B.H, and Y.G; S.T, Q.L, and M.G. reviewed and edited the article; X.Z and H.Z wrote the article.

Corresponding author

Correspondence to Honggen Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Xu, Z., Chen, Y. et al. Development of introgression lines and mapping of qGW2, a novel QTL that confers grain width, in rice (Oryza sativa L.). Mol Breeding 44, 10 (2024). https://doi.org/10.1007/s11032-024-01453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-024-01453-0

Keywords

Navigation