Skip to main content
Log in

Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We prove a quantitative version of the classical Tits’ alternative for discrete groups acting on packed Gromov-hyperbolic spaces supporting a convex geodesic bicombing. Some geometric consequences, as uniform estimates on systole, diastole, algebraic entropy and critical exponent of the groups, will be presented. Finally we will study the behaviour of these group actions under limits, providing new examples of compact classes of metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

We do not analyse or generate any datasets.

Notes

  1. Notice that, in this weaker form, the Tits Alternative is no longer a dichotomy for linear groups, since it is well known that there exist solvable groups of \(GL(n,{\mathbb {R}})\) which also contain free semigroups (and actually, any finitely generated solvable group which is not virtually nilpotent contains a free semigroup on two generators [34]). It remains a dichotomy for those classes of groups for which “virtually solvable” implies sub-exponential growth, e.g. hyperbolic groups, groups acting geometrically on CAT(0)-spaces etc.

  2. The authors are not able to understand the proof in [19] without the torsionless assumption, which seems to be used at page 14, below Lemma 4.5.

  3. In [3, 5] the authors only consider compact quotients of convex, \(\delta \)-hyperbolic spaces, under the weaker assumption of bounded entropy; however, the compactness of the class GCB\((P_0,r_0,\delta ; D)\) follows from the same arguments and the contractibility of convex, geodesically bicombed spaces.

  4. Notice that in [2] they use the notation \(\ell (g)\) to denote \(\Vert g \Vert \), while we use \(\ell (g)\) to denote the minimal displacement.

References

  1. Arzhantseva, G.N., Lysenok, I.G.: A lower bound on the growth of word hyperbolic groups. J. Lond. Math. Soc. 73(1), 109–125 (2006)

    Article  MathSciNet  Google Scholar 

  2. Besson, G., Courtois, G., Gallot, S., Sambusetti, A.: Curvature-free Margulis lemma for Gromov-hyperbolic spaces. arXiv preprint arXiv:1712.08386 (2017)

  3. Besson, G., Courtois, G., Gallot, S., Sambusetti, A.: Finiteness theorems for Gromov-hyperbolic spaces and groups. arXiv preprint arXiv:2109.13025 (2021)

  4. Breuillard, E., Fujiwara, K.: On the joint spectral radius for isometries of non-positively curved spaces and uniform growth. Annales de l’Institut Fourier 71, 317–391 (2021)

    Article  MathSciNet  Google Scholar 

  5. Besson, G., Gallot, S.: On scalar and Ricci curvatures. SIGMA Symmetry Integr. Geom. Methods Appl. 17, 046 (2021)

    MathSciNet  Google Scholar 

  6. Breuillard, E., Green, B., Tao, T.: The structure of approximate groups. Publications mathématiques de l’IHÉS 116, 10 (2011)

    Google Scholar 

  7. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, vol. 319. Springer, Berlin (2013)

    Google Scholar 

  8. Bowditch, B.H.: Discrete parabolic groups. J. Differ. Geom. 38(3), 559–583 (1993)

    Article  MathSciNet  Google Scholar 

  9. Bowditch, B.H.: A course on geometric group theory (2006)

  10. Cavallucci, N.: Entropies of non-positively curved metric spaces. Geom. Dedicata 216(5), 54 (2022)

    Article  MathSciNet  Google Scholar 

  11. Cavallucci, N.: Continuity of critical exponent of quasiconvex-cocompact groups under Gromov–Hausdorff convergence. Ergod. Theory Dyn. Syst. 43(4), 1189–1221 (2023)

    Article  MathSciNet  Google Scholar 

  12. Coornaert, M., Delzant, T., Papadopoulos, A.: Géométrie et théorie des groupes: les groupes hyperboliques de Gromov. Lecture Notes in Mathematics, Springer, Berlin (1990)

    Book  Google Scholar 

  13. Chepoi, V., Dragan, F., Vaxes, Y.: Core congestion is inherent in hyperbolic networks. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2264–2279. SIAM (2017)

  14. Coornaert, M.: Mesures de patterson-sullivan sur le bord d’un espace hyperbolique au sens de gromov. Pac. J. Math. 159(2), 241–270 (1993)

    Article  MathSciNet  Google Scholar 

  15. Coulon, R.: Partial periodic quotients of groups acting on a hyperbolic space. Annales de l’Institut Fourier 66(5), 1773–1857 (2016)

    Article  MathSciNet  Google Scholar 

  16. Cavallucci, N., Sambusetti, A.: Packing and doubling in metric spaces with curvature bounded above. Math. Z. 300(3), 3269–3314 (2022)

    Article  MathSciNet  Google Scholar 

  17. Delzant, T.: Sous-groupes distingués et quotients des groupes hyperboliques. Duke Math. J. 83(3), 661–682 (1996)

    Article  MathSciNet  Google Scholar 

  18. Descombes, D.: Spaces with convex geodesic bicombings. Ph.D. thesis, ETH Zurich (2015)

  19. Dey, S., Kapovich, M., Liu, B.: Ping-pong in Hadamard manifolds. arXiv preprint arXiv:1806.07020 (2018)

  20. Das, T., Simmons, D., Urbański, M.: Geometry and dynamics in Gromov hyperbolic metric spaces, vol. 218. American Mathematical Society, Providence (2017)

    Google Scholar 

  21. Fukaya, K.: Theory of convergence for Riemannian orbifolds. Jpn. J. Math. 12, 121–160 (1986)

    Article  MathSciNet  Google Scholar 

  22. Fukaya, K., Yamaguchi, T.: The fundamental groups of almost non-negatively curved manifolds. Ann. Math. 136, 253–333 (1992)

    Article  MathSciNet  Google Scholar 

  23. Genevois, A.: Coning-off cat (0) cube complexes. Annales de l’Institut Fourier 71, 1535–1599 (2021)

    Article  MathSciNet  Google Scholar 

  24. Gupta, R., Jankiewicz, K., Ng, T.: Groups acting on CAT (0) cube complexes with uniform exponential growth. Algebr. Geom. Topol. 23(1), 13–42 (2023)

    Article  MathSciNet  Google Scholar 

  25. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory, pp. 75–263. Springer, Berlin (1987)

    Chapter  Google Scholar 

  26. Hamenstädt, U.: Rank-one isometries of proper CAT (0)-spaces. Contemp. Math. 501, 43 (2009)

    Article  MathSciNet  Google Scholar 

  27. Kapovich, M.: Hyperbolic Manifolds and Discrete Groups, vol. 183. Springer, Berlin (2001)

    Google Scholar 

  28. Kleiner, B.: The local structure of length spaces with curvature bounded above. Math. Z. 231, 409–456 (1999)

    Article  MathSciNet  Google Scholar 

  29. Koubi, M.: Croissance uniforme dans les groupes hyperboliques. Annales de l’institut Fourier 48, 1441–1453 (1998)

    Article  MathSciNet  Google Scholar 

  30. Lytchak, A., Nagano, K.: Topological regularity of spaces with an upper curvature bound. J. Eur. Math. Soc. 20, 137–165 (2021)

    Article  Google Scholar 

  31. Lytchak, A., Nagano, K.: Geodesically complete spaces with an upper curvature bound. Geom. Funct. Anal. 29(1), 295–342 (2019)

    Article  MathSciNet  Google Scholar 

  32. Nagano, K.: Volume pinching theorems for CAT (1) spaces. Am. J. Math. 144(1), 267–285 (2022)

    Article  MathSciNet  Google Scholar 

  33. Osin, D.: Acylindrically hyperbolic groups. Trans. Am. Math. Soc. 368(2), 851–888 (2016)

    Article  MathSciNet  Google Scholar 

  34. Rosenblatt, J.M.: Invariant measures and growth conditions. Trans. Am. Math. Soc. 193, 33–53 (1974)

    Article  MathSciNet  Google Scholar 

  35. Sageev, M., Wise, D.T.: The tits alternative for CAT (0) cubical complexes. Bull. Lond. Math. Soc. 37(5), 706–710 (2005)

    Article  MathSciNet  Google Scholar 

  36. Tits, J.: Free subgroups in linear groups. J. Algebra 20(2), 250–270 (1972)

    Article  MathSciNet  Google Scholar 

  37. Wu, Y.: Translation lengths of parabolic isometries of CAT (0)-spaces and their applications. J. Geom. Anal. 28, 375–392 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to G. Besson, G. Courtois and S. Gallot for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Cavallucci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Sambusetti is member of the Differential Geometry section of the GNSAGA-INdAM.

N. Cavallucci is partially supported by the SFB/TRR 191, funded by the DFG.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallucci, N., Sambusetti, A. Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces. Geom Dedicata 218, 36 (2024). https://doi.org/10.1007/s10711-023-00874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00874-z

Keywords

Mathematics Subject Classification (2020)

Navigation