Skip to main content
Log in

Abstract

The densifiability of a metric space (Xd) is the susceptibility of being filled by Peano continua. In the present paper we introduce the notion of densifiability on the hyperspace obtained from a determined collection of subsets of a metric space (Xd) endowed with a metric structure. Concretely, by using two theorems of Borsuk-Mazurkiewicz and Michael, we show that if the space (Xd) is a continuum, then the hyperspace \({{\mathcal {C}}}{{\mathcal {L}}}(X)\) of all closed non-empty subsets of (Xd) is densifiable for the Hausdorff metric \({\mathcal {H}}_{d}\). Likewise, we prove that the densifiability of the hyperspace \(({{\mathcal {C}}}{{\mathcal {L}}}(X),{\mathcal {H}}_{d})\) implies that any completion of (Xd) is a continuum provided that (Xd) is bounded. From this result we give a characterization of the densifiability of \(({{\mathcal {C}}}{{\mathcal {L}}}(X),{\mathcal {H}}_{d})\) for a bounded and complete metric space (Xd). Finally, from old Bing, Moise and Menger theorems, we prove that any dense subspace of a Peano continuum has a densifiable hyperspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, Dordrecht (1993)

    Book  Google Scholar 

  2. Bing, R.H.: Extending a metric. Duke Math. J. 14, 511–519 (1947)

    Article  MathSciNet  Google Scholar 

  3. Bing, R.H.: Partitioning a set. Bull. Am. Math. Soc. 55(12), 1101–1110 (1949)

    Article  MathSciNet  Google Scholar 

  4. Borsuk, K., Mazurkiewicz, S.: Sur l’hyperespace d’un continu. C. R. Soc. Sc. Varsovie 24, 149–152 (1931)

    Google Scholar 

  5. Costantini, C., Kubis, W.: Paths in hyperspaces. Appl. Gen. Topol. Univ. Politécnica Valencia 4(2), 377–390 (2003)

    MathSciNet  Google Scholar 

  6. Caballero, J., Rocha, J., Sadarangani, K.: Existence of a fractal of iterated function systems containing condensing functions for the degree of nondensifiability. J. Fixed Point Theory Appl. 25, 1 (2023). https://doi.org/10.1007/s11784-022-00995-0

    Article  MathSciNet  Google Scholar 

  7. Dugundji, J.: Topology. Allyn and Bacon Inc, Boston (1966)

    Google Scholar 

  8. García, G.: The minimal displacement problem of DND-Lipschitzian mappings. Bol. Soc. Mat. Mex. 29, 38 (2023). https://doi.org/10.1007/s40590-023-00512-4

    Article  MathSciNet  Google Scholar 

  9. García, G.: Continuous global optimization on fractals through \(\alpha \)-dense curves. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 117, 165 (2023). https://doi.org/10.1007/s13398-023-01493-9

    Article  MathSciNet  Google Scholar 

  10. Garcia, G., Mora, G.: The degree of convex nondensifiability in Banach spaces. J. Convex Anal. 22, 871–888 (2015)

    MathSciNet  Google Scholar 

  11. Garcia, G., Mora, G.: A fixed point result in Banach algebras based on the degree of nondensifiability and applications to quadratic integral equations. J. Math. Anal. Appl. 472(1), 1220–1235 (2019)

    Article  MathSciNet  Google Scholar 

  12. García, G., Mora, G.: Iterated function systems based on the degree of nondensifiability. J. Fractal Geom. 9(3/4), 357–372 (2022). https://doi.org/10.4171/JFG/121

    Article  MathSciNet  Google Scholar 

  13. Hausdorff, F.: Mengenlehre, 3d edn. Springer, Berlin (1927)

    Google Scholar 

  14. Hocking, J.G., Young, G.S.: Topology. Dover Publications Inc, New York (1988)

    Google Scholar 

  15. Illanes, A., Nadler, S.B.: Hyperspaces: Fundamental and Recent Advances. Marcel Dekker Inc, New York (1999)

    Google Scholar 

  16. Kelley, J.L.: Hyperspaces of a continuum. Trans. Am. Math. Soc. 52, 23–36 (1942)

    Article  MathSciNet  Google Scholar 

  17. Kelley, J.L.: General Topology. D. van Norstrand Company Inc, New York (1955)

    Google Scholar 

  18. Mazurkiewicz, S.: Sur l’hyperespace d’un continu. Fundam. Math. 18, 171–177 (1932)

    Article  Google Scholar 

  19. Menger, K.: Untersuchungen über allgemeine Metrik I, II, III. Math. Ann. 100, 75–163 (1928)

    Article  MathSciNet  Google Scholar 

  20. Michael, E.: Topologies on spaces of subsets. Trans. Am. Math. Soc. 71, 152–182 (1951)

    Article  MathSciNet  Google Scholar 

  21. Moise, E.E.: Grille decomposition and convexification theorems for compact locally connected continua. Bull. Am. Math. Soc. 55, 1111–1121 (1949)

    Article  MathSciNet  Google Scholar 

  22. Mora, G.: The Peano curves as limit of \(\alpha \)-dense curves. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 9, 23–28 (2005)

    MathSciNet  Google Scholar 

  23. Mora, G.: Some density properties of the closed unit ball of L1. Topol. Appl. 156, 2246–2256 (2009)

    Article  Google Scholar 

  24. Mora, G., Cherruault, Y.: Characterization and generation of \(\alpha \)-dense curves. Comput. Math. Appl. 33, 83–91 (1997)

    Article  MathSciNet  Google Scholar 

  25. Mora, G., Benavent, R., Navarro, J.C.: Polynomial alpha-dense curves and multiple integration. Int. J. Comput. Numer. Anal. Appl. 1(1), 55–68 (2002)

    MathSciNet  Google Scholar 

  26. Mora, G., Mira, J.A.: Alpha-dense curves in infinite dimensional spaces. Int. J. Pure Appl. Math. 5(4), 437–449 (2003)

    MathSciNet  Google Scholar 

  27. Mora, G., Redtwitz, D.A.: Densifiable metric spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 105(1), 71–83 (2011)

    Article  MathSciNet  Google Scholar 

  28. Nadler, S.: Hyperspaces of Sets. Marcel-Dekker, New York (1978)

    Google Scholar 

  29. Sagan, H.: Space-filling Curves. Springer, New York (1994)

    Book  Google Scholar 

  30. Toranzos, F.A.: Embedding of convex metric spaces in Euclidean spaces (In Spanish). Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires (1966). http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_1279_Toranzos.pdf

  31. Vietoris, L.: Bereiche Zweiter Ordnung. Monatsh. Math. Phys. 33, 49–62 (1923)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Pezoa, E., Mora, G. & Redtwitz, D.A. Densifiability in hyperspaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118, 55 (2024). https://doi.org/10.1007/s13398-024-01557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-024-01557-4

Keywords

Mathematics Subject Classification

Navigation