Skip to main content

Advertisement

Log in

Extracellular Vesicles Derived from Glioma Stem Cells Affect Glycometabolic Reprogramming of Glioma Cells Through the miR-10b-5p/PTEN/PI3K/Akt Pathway

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Objective

Glioma is one of the most prevalently diagnosed types of primary malignant brain tumors. Glioma stem cells (GSCs) are crucial in glioma recurrence. This study aims to elucidate the mechanism by which extracellular vehicles (EVs) derived from GSCs modulate glycometabolic reprogramming in glioma.

Methods

Xenograft mouse models and cell models of glioma were established and treated with GSC-EVs. Additionally, levels and activities of PFK1, LDHA, and FASN were assessed to evaluate the effect of GSC-EVs on glycometabolic reprogramming in glioma. Glioma cell proliferation, invasion, and migration were evaluated using MTT, EdU, Colony formation, and Transwell assays. miR-10b-5p expression was determined, with its target gene PTEN and downstream pathway PI3K/Akt evaluated. The involvement of miR-10b-5p and the PI3K/Akt pathway in the effect of GSC-EVs on glycometabolic reprogramming was tested through joint experiments.

Results

GSC-EVs facilitated glycometabolic reprogramming in glioma mice, along with enhancing glucose uptake, lactate level, and adenosine monophosphate-to-adenosine triphosphate ratio. Moreover, GSC-EV treatment potentiated glioma cell proliferation, invasion, and migration, reinforced cell resistance to temozolomide, and raised levels and activities of PFK1, LDHA, and FASN. miR-10b-5p was highly-expressed in GSC-EV-treated glioma cells while being carried into glioma cells by GSC-EVs. miR-10b-5p targeted PTEN and activated the PI3K/Akt pathway, hence stimulating glycometabolic reprogramming.

Conclusion

GSC-EVs target PTEN and activate the PI3K/Akt pathway through carrying miR-10b-5p, subsequently accelerating glycometabolic reprogramming in glioma, which might provide new insights into glioma treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Pradhan, A., Mozaffari, K., Ghodrati, F., Everson, R.G., & Yang, I. (2022). Modern surgical management of incidental gliomas. Journal of Neurooncol, 159(1), 81–94. Epub 2022 Jun 15. https://doi.org/10.1007/s11060-022-04045-0

  2. Mala, U., Baral, T. K., & Somasundaram, K. (2022). Integrative analysis of cell adhesion molecules in glioblastoma identified prostaglandin F2 receptor inhibitor (PTGFRN) as an essential gene. BMC Cancer, 22, 642.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang, Q. W., Wang, Y. W., Wang, Z. L., Bao, Z. S., Jiang, T., Wang, Z., & You, G. (2020). Clinical and molecular characterization of incidentally discovered Lower-Grade Gliomas with Enrichment of Aerobic respiration. Oncotargets and Therapy, 13, 9533–9542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., & Ellison, D. W. (2016). The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131, 803–820.

    Article  PubMed  Google Scholar 

  5. Barthel, L., Hadamitzky, M., Dammann, P., Schedlowski, M., Sure, U., Thakur, B. K., & Hetze, S. (2022). Glioma: Molecular signature and crossroads with tumor microenvironment. Cancer and Metastasis Reviews, 41, 53–75.

    Article  CAS  PubMed  Google Scholar 

  6. Bao, Z., Wang, Y., Wang, Q., Fang, S., Shan, X., Wang, J., & Jiang, T. (2021). Intratumor heterogeneity, microenvironment, and mechanisms of drug resistance in glioma recurrence and evolution. Frontiers in Medicine, 15, 551–561.

    Article  Google Scholar 

  7. Fabian, C., Han, M., Bjerkvig, R., & Niclou, S. P. (2021). Novel facets of glioma invasion. International Review of Cell and Molecular Biology, 360, 33–64.

    Article  CAS  PubMed  Google Scholar 

  8. Deshmukh, R., Allega, M. F., & Tardito, S. (2021). A map of the altered glioma metabolism. Trends in Molecular Medicine, 27, 1045–1059.

    Article  CAS  PubMed  Google Scholar 

  9. Cook, K. M., Shen, H., McKelvey, K. J., Gee, H. E., & Hau, E. (2021). Targeting Glucose Metabolism of Cancer Cells with Dichloroacetate to Radiosensitize High-Grade Gliomas. International Journal of Molecular Sciences, 22(14), 7265. https://doi.org/10.3390/ijms22147265

  10. Caniglia, J. L., Jalasutram, A., Asuthkar, S., Sahagun, J., Park, S., Ravindra, A., Tsung, A. J., Guda, M. R., & Velpula, K. K. (2021). Beyond glucose: Alternative sources of energy in glioblastoma. Theranostics, 11, 2048–2057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yin, W., Wang, J., Jiang, L., Kang, Y. J. (2021) Cancer and stem cells. Experimental Biology and Medicine (Maywood), 246, 1791–1801.

  12. Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA. Journal of Allergy and Clinical Immunology, 141, 1202–1207.

  13. Scioli, M. G., Terriaca, S., Fiorelli, E., Storti, G., Fabbri, G., Cervelli, V., & Orlandi, A. (2021). Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. International Journal of Molecular Sciences, 22(19), 10572. https://doi.org/10.3390/ijms221910572

  14. Ma, Q., Long, W., Xing, C., Chu, J., Luo, M., Wang, H. Y., Liu, Q., & Wang, R. F. (2018). Cancer Stem cells and immunosuppressive microenvironment in Glioma. Frontiers in Immunology, 9, 2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Biserova, K., Jakovlevs, A., Uljanovs, R., & Strumfa, I. (2021). Cancer Stem cells: Significance in Origin, Pathogenesis and Treatment of Glioblastoma. Cells, 10(3), 621. https://doi.org/10.3390/cells10030621

  16. Guo, X., Sui, R., & Piao, H. (2022). Tumor-derived small extracellular vesicles: Potential roles and mechanism in glioma. Journal of Nanobiotechnology, 20, 383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma, C., Nguyen, H. P. T., Jones, J. J., Stylli, S. S., Whitehead, C. A., Paradiso, L., Luwor, R. B., Areeb, Z., Hanssen, E., Cho, E., Putz, U., Kaye, A. H., & Morokoff, A. P. (2022). Extracellular vesicles secreted by glioma stem cells are involved in Radiation Resistance and Glioma Progression. International Journal of Molecular Sciences, 23(5), 2770. https://doi.org/10.3390/ijms23052770

  18. Alfardus, H., McIntyre, A., & Smith, S. (2017). MicroRNA Regulation of Glycolytic Metabolism in Glioblastoma. Biomed Research International, 2017, 9157370.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luo, Y., Hou, W. T., Zeng, L., Li, Z. P., Ge, W., Yi, C., Kang, J. P., Li, W. M., Wang, F., Wu, D. B., Wang, R. Y., Qu, B. L., Li, X. F., & Wang, J. J. (2020). Progress in the study of markers related to glioma prognosis. European Review for Medical and Pharmacological Sciences, 24, 7690–7697.

    CAS  PubMed  Google Scholar 

  20. Qian, M., Chen, Z., Guo, X., Wang, S., Zhang, Z., Qiu, W., Qi, Y., Zhang, S., Xu, J., Zhao, R., Xue, H., & Li, G. (2021). Exosomes derived from hypoxic glioma deliver miR-1246 and miR-10b-5p to normoxic glioma cells to promote migration and invasion. Laboratory Investigation, 101, 612–624.

    Article  CAS  PubMed  Google Scholar 

  21. Li, B., Yang, C., Zhu, Z., Chen, H., & Qi, B. (2022). Hypoxic glioma-derived extracellular vesicles harboring MicroRNA-10b-5p enhance M2 polarization of macrophages to promote the development of glioma. Cns Neuroscience & Therapeutics, 28, 1733–1747.

    Article  CAS  Google Scholar 

  22. Shahcheraghi, S. H., Tchokonte-Nana, V., Lotfi, M., Lotfi, M., Ghorbani, A., & Sadeghnia, H. R. (2020). Wnt/beta-catenin and PI3K/Akt/mTOR signaling pathways in Glioblastoma: Two main targets for Drug Design: A review. Current Pharmaceutical Design, 26, 1729–1741.

    Article  CAS  PubMed  Google Scholar 

  23. Yan, T., Wang, X., Wei, G., Li, H., Hao, L., Liu, Y., Yu, X., Zhu, W., Liu, P., Zhu, Y., & Zhou, X. (2021). Exosomal miR-10b-5p mediates cell communication of gastric cancer cells and fibroblasts and facilitates cell proliferation. Journal of Cancer, 12, 2140–2150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aslam, N., Abusharieh, E., Abuarqoub, D., Ali, D., Al-Hattab, D., Wehaibi, S., Al-Kurdi, B., Jamali, F., Alshaer, W., Jafar, H., & Awidi, A. S. (2021). Anti-oncogenic activities exhibited by paracrine factors of MSCs can be mediated by modulation of KITLG and DKK1 genes in glioma SCs in vitro. Molecular Therapy Oncolytics, 20, 147–165.

    Article  CAS  PubMed  Google Scholar 

  25. Xiao, Z., Yang, X., Liu, Z., Shao, Z., Song, C., Zhang, K., Wang, X., & Li, Z. (2021). GASC1 promotes glioma progression by enhancing NOTCH1 signaling. Molecular Medicine Reports, 23(5), 310. Epub 2021 Mar2. https://doi.org/10.3892/mmr.2021.11949

  26. Chen, S. S., Li, K., Wu, J., Peng, Z. Y., Wang, Z. D., Wang, J. C., Xu, C. W., Zhu, C. L., Li, B. C., Ren, H., Tang, S. C., & Sun, X. (2021). Stem signatures associated antibodies yield early diagnosis and precise prognosis predication of patients with non-small cell lung cancer. Journal of Cancer Research and Clinical Oncology, 147, 223–233.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, S., Ying, Y., Ye, J., Chen, M., Wu, Q., Dou, H., Ni, W., Xu, H., & Xu, J. (2021). AAV2-mediated and hypoxia response element-directed expression of bFGF in neural stem cells showed therapeutic effects on spinal cord injury in rats. Cell Death and Disease, 12, 274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo, Y. H., Zhao, S., Du, Y. X., Xing, Q. J., Chen, B. L., & Yu, C. Q. (2017). Effects of ginsenoside Rg1-loaded alginate-chitosan microspheres on human bone marrow stromal cells. Bioscience Reports, 37(3), BSR20160566. https://doi.org/10.1042/BSR20160566

  29. Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I., & Sanderson, R. D. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. Journal of Biological Chemistry, 288, 10093–10099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Le Gall, L., Ouandaogo, Z. G., Anakor, E., Connolly, O., Butler Browne, G., Laine, J., Duddy, W., & Duguez, S. (2020). Optimized method for extraction of exosomes from human primary muscle cells. Skeletal Muscle, 10, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu, J., Zhu, S., Tang, W., Huang, Q., Mei, Y., & Yang, H. (2021). Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p. Cancer Cell International, 21, 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei, D., Zhan, W., Gao, Y., Huang, L., Gong, R., Wang, W., Zhang, R., Wu, Y., Gao, S., & Kang, T. (2021). RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Research, 31, 157–177.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, J., Feng, Y., Zeng, X., He, M., Gong, Y., & Liu, Y. (2021). Extracellular vesicles-encapsulated let-7i shed from bone mesenchymal stem cells suppress lung cancer via KDM3A/DCLK1/FXYD3 axis. Journal of Cellular and Molecular Medicine, 25, 1911–1926.

    Article  CAS  PubMed  Google Scholar 

  34. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., & Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319, 1244–1247.

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura, H., Wakita, S., Yasufuku, K., Makiyama, T., Waraya, M., Hashimoto, N., & Murayama, T. (2015). Sphingomyelin regulates the activity of secretory phospholipase A2 in the plasma membrane. Journal of Cellular Biochemistry, 116, 1898–1907.

    Article  CAS  PubMed  Google Scholar 

  36. Luberto, C., Hassler, D. F., Signorelli, P., Okamoto, Y., Sawai, H., Boros, E., Hazen-Martin, D. J., Obeid, L. M., Hannun, Y. A., & Smith, G. K. (2002). Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. Journal of Biological Chemistry, 277, 41128–41139.

    Article  CAS  PubMed  Google Scholar 

  37. Essandoh, K., Yang, L., Wang, X., Huang, W., Qin, D., Hao, J., Wang, Y., Zingarelli, B., Peng, T., & Fan, G. C. (2015). Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochimica Et Biophysica Acta, 1852, 2362–2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, L., & Brigstock, D. R. (2016). Integrins and heparan sulfate proteoglycans on hepatic stellate cells (HSC) are novel receptors for HSC-derived exosomes. Febs Letters, 590, 4263–4274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Serpe, C., Monaco, L., Relucenti, M., Iovino, L., Familiari, P., Scavizzi, F., Raspa, M., Familiari, G., Civiero, L., D’Agnano, I., Limatola, C., & Catalano, M. (2021). Microglia-Derived Small Extracellular Vesicles Reduce Glioma Growth by Modifying Tumor Cell Metabolism and Enhancing Glutamate Clearance through miR-124, Cells, 10(8), 2066. https://doi.org/10.3390/cells10082066

  40. Liu, J., Gao, L., Zhan, N., Xu, P., Yang, J., Yuan, F., Xu, Y., Cai, Q., Geng, R., & Chen, Q. (2020). Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma. Journal of Experimental & Clinical Cancer Research, 39, 137.

    Article  CAS  Google Scholar 

  41. Montanaro, M., Scimeca, M., Anemona, L., Servadei, F., Giacobbi, E., Bonfiglio, R., Bonanno, E., Urbano, N., Ippoliti, A., Santeusanio, G., Schillaci, O., & Mauriello, A. (2021). The Paradox Effect of Calcification in Carotid atherosclerosis: Microcalcification is correlated with Plaque instability. International Journal of Molecular Sciences, 22(1), 395. https://doi.org/10.3390/ijms22010395

  42. Liu, X., Jiang, F., Wang, Z., Tang, L., Zou, B., Xu, P., & Yu, T. (2021). Hypoxic bone marrow mesenchymal cell-extracellular vesicles containing mir-328-3p promote lung cancer progression via the NF2-mediated Hippo axis. Journal of Cellular and Molecular Medicine, 25, 96–109.

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J. H., Liu, R., Li, J., Zhang, C., Wang, Y., Cai, Q., Qian, X., Xia, Y., Zheng, Y., Piao, Y., Chen, Q., de Groot, J. F., Jiang, T., & Lu, Z. (2017). Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nature Communications, 8, 949.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huo, S., & Dou, D. (2021). Circ_0056285 regulates proliferation, apoptosis and Glycolysis of Osteosarcoma cells via miR-1244/TRIM44 Axis. Cancer Management and Research, 13, 1257–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu, J., Zhao, J., Zhang, H., Fan, X., Geng, W., & Qiao, S. (2021). MicroRNA-451a prevents cutaneous squamous cell carcinoma progression via the 3-phosphoinositide-dependent protein kinase-1-mediated PI3K/AKT signaling pathway. Experimental and Therapeutic Medicine, 21, 116.

    Article  CAS  PubMed  Google Scholar 

  46. Hu, Y., Zhang, Y., Ding, M., & Xu, R. (2021). Long noncoding RNA TMPO-AS1/miR-126-5p/BRCC3 axis accelerates gastric cancer progression and angiogenesis via activating PI3K/Akt/mTOR pathway. Journal of Gastroenterology and Hepatology, 36, 1877–1888.

    Article  CAS  PubMed  Google Scholar 

  47. Yang, K. L., Khoo, B. Y., Ong, M. T., Yoong, I. C. K., & Sreeramanan, S. (2021). In vitro anti-breast cancer studies of LED red light therapy through autophagy. Breast Cancer, 28, 60–66.

    Article  PubMed  Google Scholar 

  48. Chen, Y., Zhou, H., Yang, S., & Su, D. (2021). Increased ABCC2 expression predicts cisplatin resistance in non-small cell lung cancer. Cell Biochemistry and Function, 39, 277–286.

    Article  CAS  PubMed  Google Scholar 

  49. Orang, A. V., Petersen, J., McKinnon, R. A., & Michael, M. Z. (2019). Micromanaging aerobic respiration and glycolysis in cancer cells. Molecular Metabolism, 23, 98–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Z. F., Liao, F., Wu, H., & Dai, J. (2019). Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma. Journal of Experimental & Clinical Cancer Research, 38, 201.

    Article  Google Scholar 

  51. Zhou, Y., Hofstetter, W. L., He, Y., Hu, W., Pataer, A., Wang, L., Wang, J., Zhou, Y., Yu, L., Fang, B., & Swisher, S. G. (2010). KLF4 inhibition of lung cancer cell invasion by suppression of SPARC expression. Cancer Biology & Therapy, 9, 507–513.

    Article  CAS  Google Scholar 

  52. Ma, Y., Wu, L., Liu, X., Xu, Y., Shi, W., Liang, Y., Yao, L., Zheng, J., & Zhang, J. (2017). KLF4 inhibits colorectal cancer cell proliferation dependent on NDRG2 signaling. Oncology Reports, 38, 975–984.

    Article  CAS  PubMed  Google Scholar 

  53. Thakur, A., Faujdar, C., Sharma, R., Sharma, S., Malik, B., Nepali, K., & Liou, J. P. (2022). Glioblastoma: Current status, emerging targets, and recent advances. Journal of Medicinal Chemistry, 65, 8596–8685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nguyen, T. T. T., Shang, E., Westhoff, M. A., Karpel-Massler, G., & Siegelin, M. D. (2022). Therapeutic Drug-Induced Metabolic Reprogramming in Glioblastoma, Cells, 11(19), 2956. https://doi.org/10.3390/cells11192956

  55. Yang, E., Wang, X., Gong, Z., Yu, M., Wu, H., & Zhang, D. (2020). Exosome-mediated metabolic reprogramming: The emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduction and Targeted Therapy, 5, 242.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cismaru, C. A., Pirlog, R., Calin, G. A., & Berindan-Neagoe, I. (2022). Stem cells in the Tumor Immune Microenvironment -Part of the cure or part of the Disease? Ontogeny and Dichotomy of Stem and Immune Cells has led to better understanding. Stem Cell Reviews Report, 18, 2549–2565.

    Article  Google Scholar 

  57. Zhao, N., Zhang, J., Zhao, Q., Chen, C., & Wang, H. (2021). Mechanisms of long non-coding RNAs in Biological characteristics and aerobic glycolysis of Glioma. International Journal of Molecular Sciences, 22(20), 11197. https://doi.org/10.3390/ijms222011197

  58. Sanzey, M., Abdul Rahim, S. A., Oudin, A., Dirkse, A., Kaoma, T., Vallar, L., Herold-Mende, C., Bjerkvig, R., Golebiewska, A., & Niclou, S. P. (2015). Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma. PLoS One, 10, e0123544.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ricklefs, F. L., Maire, C. L., Matschke, J., Duhrsen, L., Sauvigny, T., Holz, M., Kolbe, K., Peine, S., Herold-Mende, C., Carter, B., Chiocca, E. A., Lawler, S. E., Westphal, M., & Lamszus, K. (2020). FASN is a biomarker enriched in malignant glioma-derived extracellular vesicles. International Journal of Molecular Sciences, 21(6), 1931. https://doi.org/10.3390/ijms21061931

  60. Xu, J., Guo, Y., Ning, W., Wang, X., Li, S., Chen, Y., Ma, L., Qu, Y., Song, Y., & Zhang, H. (2021). Comprehensive Analyses of Glucose Metabolism in Glioma reveal the glioma-promoting effect of GALM. Frontiers in Cell and Developmental Biology, 9, 717182.

    Article  PubMed  Google Scholar 

  61. Pavlova, N. N., Zhu, J., & Thompson, C. B. (2022). The hallmarks of cancer metabolism: Still emerging. Cell Metabolism, 34, 355–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morrissey, S. M., Zhang, F., Ding, C., Montoya-Durango, D. E., Hu, X., Yang, C., Wang, Z., Yuan, F., Fox, M., Zhang, H. G., Guo, H., Tieri, D., Kong, M., Watson, C. T., Mitchell, R. A., Zhang, X., McMasters, K. M., Huang, J., & Yan, J. (2021). Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metabolism, 33, 2040–2058. e2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, D. X., Vu, L. T., Ismail, N. N., Le, M. T. N., & Grimson, A. (2021). Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Seminars in Cancer Biology, 74, 24–44.

    Article  CAS  PubMed  Google Scholar 

  64. Libby, C. J., Tran, A. N., Scott, S. E., Griguer, C., & Hjelmeland, A. B. (2018). The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. Biochimica Et Biophysica Acta - Reviews on Cancer, 1869, 175–188.

    Article  CAS  Google Scholar 

  65. Karachi, A., Dastmalchi, F., Mitchell, D. A., & Rahman, M. (2018). Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro-Oncology, 20, 1566–1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mondal, A., Kumari Singh, D., Panda, S., & Shiras, A. (2017). Extracellular vesicles as modulators of Tumor Microenvironment and Disease Progression in Glioma. Frontiers in Oncology, 7, 144.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Singh, R., Ha, S. E., Wei, L., Jin, B., Zogg, H., Poudrier, S. M., Jorgensen, B. G., Park, C., Ronkon, C. F., Bartlett, A., Cho, S., Morales, A., Chung, Y. H., Lee, M. Y., Park, J. K., Gottfried-Blackmore, A., Nguyen, L., Sanders, K. M., & Ro, S. (2021). miR-10b-5p Rescues Diabetes and Gastrointestinal Dysmotility. Gastroenterology, 160(1662–1678), e1618.

    Google Scholar 

  68. Ananta, J. S., Paulmurugan, R., & Massoud, T. F. (2016). Tailored nanoparticle codelivery of antimiR-21 and antimiR-10b augments Glioblastoma Cell kill by Temozolomide: Toward a personalized Anti-microRNA therapy. Molecular Pharmaceutics, 13, 3164–3175.

    Article  CAS  PubMed  Google Scholar 

  69. Cao, M., Isaac, R., Yan, W., Ruan, X., Jiang, L., Wan, Y., Wang, J., Wang, E., Caron, C., Neben, S., Drygin, D., Pizzo, D. P., Wu, X., Liu, X., Chin, A. R., Fong, M. Y., Gao, Z., Guo, K., Fadare, O., … Wang, S. E. (2022). Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nature Cell Biology, 24, 954–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheng, Y., Yu, C., Li, W., He, Y., & Bao, Y. (2020). Matrine inhibits Proliferation, Invasion, and Migration and induces apoptosis of Colorectal Cancer cells Via miR-10b/PTEN pathway. Cancer Biotherapy & Radiopharmaceuticals, 37(10), 871–881. Epub 2020 Sep 9. https://doi.org/10.1089/cbr.2020.3800

  71. Chen, P., Zhao, D., Li, J., Liang, X., Li, J., Chang, A., Henry, V. K., Lan, Z., Spring, D. J., Rao, G., Wang, Y. A., & DePinho, R. A. (2019). Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-Null Glioma. Cancer Cell, 35, 868–884. e866.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chen, S. R., Cai, W. P., Dai, X. J., Guo, A. S., Chen, H. P., Lin, G. S., & Lin, R. S. (2019). Research on miR-126 in glioma targeted regulation of PTEN/PI3K/Akt and MDM2-p53 pathways. European Review for Medical and Pharmacological Sciences, 23, 3461–3470.

    PubMed  Google Scholar 

  73. Qian, X., Li, X., Shi, Z., Xia, Y., Cai, Q., Xu, D., Tan, L., Du, L., Zheng, Y., Zhao, D., Zhang, C., Lorenzi, P. L., You, Y., Jiang, B. H., Jiang, T., Li, H., & Lu, Z. (2019). PTEN suppresses glycolysis by Dephosphorylating and Inhibiting Autophosphorylated PGK1. Molecular Cell, 76, 516–527. e517.

    Article  CAS  PubMed  Google Scholar 

  74. Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q., Jiang, B., Feng, J., Li, J., & Gu, Y. (2019). PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (review). Molecular Medicine Reports, 19, 783–791.

    CAS  PubMed  Google Scholar 

  75. Chen, D., Wang, H., Chen, J., Li, Z., Li, S., Hu, Z., Huang, S., Zhao, Y., & He, X. (2018). MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric Cancer cells. Frontiers in Pharmacology, 9, 502.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the participants involved in this study. This study was funded by the Affiliated Hospital of North Sichuan Medical College of China (2019ZD001) the North Sichuan Medical College (CBY23-ZDA01) and the Bureau of Science and Technology Nanchong City (19SXHZ0321).

Funding

Thia studies was funded by the Affiliated Hospital of North Sichuan Medical College of China (2019ZD001), the North Sichuan Medical College (CBY23-ZDA01) and the Bureau of Science and Technology Nanchong City (19SXHZ0321).

Author information

Authors and Affiliations

Authors

Contributions

Study concepts and manuscript review: Shun Li, Lifang Mao, and Lvmeng Song; Study design and manuscript preparation: Shun Li, Lifang Mao, and Lvmeng Song; Definition of intellectual content and manuscript editing: Xiaoping Tang and Xiangrong Chen; Experimental studies and data acquisition: Shun Li, Lifang Mao, and Xiaochao Xia; Data analysis: Zihao Wang, Yinchuan Cheng and Jinqing Lai. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shun Li, Xiaoping Tang or Xiangrong Chen.

Ethics declarations

Ethics Approval and Consent to Participate

Approval was obtained from the ethics committee of Affiliated Hospital of North Sichuan Medical College. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent for Publication

Not applicable.

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shun Li, Lifang Mao and Lvmeng Song are co-first authors and contributed equally to this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Mao, L., Song, L. et al. Extracellular Vesicles Derived from Glioma Stem Cells Affect Glycometabolic Reprogramming of Glioma Cells Through the miR-10b-5p/PTEN/PI3K/Akt Pathway. Stem Cell Rev and Rep 20, 779–796 (2024). https://doi.org/10.1007/s12015-024-10677-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-024-10677-8

Keywords

Navigation