Skip to main content
Log in

Boundedness and large-time behavior in a chemotaxis system with signal-dependent motility arising from tumor invasion

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the following chemotaxis system with signal-dependent motility arising from tumor invasion

$$\begin{aligned} \left\{ \begin{aligned}&u_t=\Delta (\varphi (v)u)+\rho u -\mu u^l,&\qquad \quad x\in \Omega ,\,t>0,\\&v_t=\Delta v+ wz,&\qquad \quad x\in \Omega ,\,t>0,\\&w_t=-wz,&\qquad \quad x\in \Omega ,\,t>0,\\&z_t=\Delta z-z+u,&\qquad \quad x\in \Omega ,\,t>0 \end{aligned} \right. \end{aligned}$$

under homogeneous Neumann boundary conditions in a smooth bounded domain \( \Omega \subset {\mathbb {R}}^n(n\ge 1)\), where the parameters \( \rho \ge 0,\mu \ge 0\) and \( l>1\) are constants, the motility function \(\varphi (v)\) satisfies \( \varphi (v)\in C^3([0,+\infty )), \varphi _1\le \varphi (v)\le \varphi _2\) and \(|\varphi '(v)|\le \varphi _3\) with \(\varphi _1,\varphi _2,\varphi _3>0.\) The purpose of this paper is to prove that the existence of global bounded solution for \(1\le n\le 3\). For \(n\ge 4\), we prove that the nonnegative classical solution (uvwz) is globally bounded if \(l>\frac{n}{2}\). In addition, we also show that all the global bounded solution will converge to the non-trivial constant steady state exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaplain, M., Anderson, A.: Mathematical modelling of tissue invasion. In: Cancer Modelling and Simulation, pp. 269-297. Math. Biol. Med. Ser., Chapman & Hall/CRC, Boca Raton (2003)

  2. Choi, Y.S., Wang, Z.A.: Prevention of blow-up by fast diffusion in chemotaxis. J. Math. Anal. Appl. 362, 553–564 (2010)

    Article  MathSciNet  Google Scholar 

  3. Cieślak, T.: Quasilinear nonuniformly parabolic system modelling chemotaxis. J. Math. Anal. Appl. 326, 1410–1426 (2007)

    Article  MathSciNet  Google Scholar 

  4. Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 424, 675–684 (2015)

    Article  MathSciNet  Google Scholar 

  5. Fujie, K.: Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete Contin. Dyn. Syst. Ser. S 13, 203–209 (2020)

    MathSciNet  Google Scholar 

  6. Fujie, K., Ito, A., Winkler, M., Yokota, T.: Stabilization in a chemotaxis model for tumor invasion. Discrete Contin. Dyn. Syst. 36, 151–169 (2016)

    MathSciNet  Google Scholar 

  7. Fujie, K., Ito, A., Yokota, T.: Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type. Adv. Math. Sci. Appl. 24, 67–84 (2014)

    MathSciNet  Google Scholar 

  8. Fujie, K., Jiang, J.: Global existence for a kinetic model of pattern formation with density-suppressed motilities. J. Differ. Equ. 269, 5338–5378 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hillen, T., Painter, K.: A users guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  10. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    Article  MathSciNet  CAS  Google Scholar 

  11. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete Contin. Dyn. Syst. Ser. B 18, 2569–2596 (2013)

    MathSciNet  Google Scholar 

  13. Jin, H.Y., Kim, Y.J., Wang, Z.A.: Boundedness, stabilization, and pattern formation driven by density-suppressed motility. SIAM J. Appl. Math. 78, 1632–1657 (2018)

    Article  MathSciNet  Google Scholar 

  14. Jin, H.Y., Liu, Z.R., Shi, S.J.: Global dynamics of a quasilinear chemotaxis model arising from tumor invasion. Nonlinear Anal. Real World Appl. 44, 18–39 (2018)

    Article  MathSciNet  Google Scholar 

  15. Jin, H.Y., Xiang, T.: Boundedness and exponential convergence in a chemotaxis model for tumor invasion. Nonlinearity 29, 3579–3596 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Providence, RI (1968)

    Book  Google Scholar 

  18. Li, D., Wu, C.: Effects of density-suppressed motility in a two-dimensional chemotaxis model arising from tumor invasion. Z. Angew. Math. Phys. 71, 153 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  19. Liu, Z.R., Xu, J.: Large time behavior of solutions for density-suppressed motility system in higher dimensions. J. Math. Anal. Appl. 475, 1596–1613 (2019)

    Article  MathSciNet  Google Scholar 

  20. Lv, W.B., Wang, Q.: A chemotaxis system with signal-dependent motility, indirect signal production and generalized logistic source: Global existence and asymptotic stabilization. J. Math. Anal. Appl. 488, 124108 (2020)

    Article  MathSciNet  Google Scholar 

  21. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  Google Scholar 

  23. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    Article  MathSciNet  Google Scholar 

  24. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  Google Scholar 

  25. Porzio, M.M.: Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103, 146–178 (1993)

    Article  ADS  Google Scholar 

  26. Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)

    Article  MathSciNet  Google Scholar 

  27. Souplet, P., Quittner, P.: Superlinear parabolic problems: blow-up, global existence and steady states. Birkhäuser Advanced Texts, Basel (2007)

    Google Scholar 

  28. Tao, Y.S., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  29. Tao, Y.S., Winkler, M.: Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system. Math. Models Methods Appl. Sci. 27, 1645–1683 (2017)

    Article  MathSciNet  CAS  Google Scholar 

  30. Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachr. 283, 1664–1673 (2010)

    Article  MathSciNet  Google Scholar 

  31. Winkler, M.: Aggregation versus global diffusion behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  ADS  Google Scholar 

  32. Winkler, M.: Does a volume-filling effect always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  35. Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities. J. Differ. Equ. 266, 8034–8066 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. Yoon, C., Kim, Y.J.: Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion. Acta Appl. Math. 149, 101–123 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D. Boundedness and large-time behavior in a chemotaxis system with signal-dependent motility arising from tumor invasion. Z. Angew. Math. Phys. 75, 31 (2024). https://doi.org/10.1007/s00033-023-02172-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02172-w

Keywords

Mathematics Subject Classification

Navigation