Skip to main content
Log in

Supercritical Fluid Chromatography–Mass Spectrometry with Atmospheric Pressure Chemical Ionization: Negatively Charged Ions of Mobile Phase Components

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Supercritical fluid chromatography (SFC) is a promising alternative to conventional chromatographic methods and has several advantages over them in selectivity, efficiency, speed of separation, and environmental friendliness. Its combination with atmospheric pressure chemical ionization (APCI) mass spectrometric detection is one of the central areas of method development and requires an understanding of the APCI specificity in using carbon dioxide-based mobile phases. In the present study, the composition of negatively charged ions formed under APCI conditions for carbon dioxide–organic modifier (methanol, isopropanol, acetonitrile) systems, and also the influence of the mobile phase and ion source parameters (corona discharge needle voltage, temperature) on it are studied using high-resolution mass spectrometry. The results obtained testify to a significant role of carbon dioxide as a direct precursor for the formation of reaction particles (hydrocarbonate and percarbonate anions, carbonate radical anion) and as a reagent capable of shifting the ion-molecular equilibrium in corona discharge plasma and forming compounds with the organic modifier (alkylcarbonic acid anions in the case of alcohols, adduct with a deprotonated acetonitrile molecule). Ion-molecular equilibria involving carbon dioxide result in the formation of a large number of reactive particles that can take part in the ionization processes of analytes in SFC–APCI-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Bernal, J.L., Martin, M.T., and Toribio, L., J. Chromatogr. A, 2013, vol. 1313, p. 24.

    Article  CAS  PubMed  Google Scholar 

  2. Saito, M., J. Biosci. Bioeng., 2013, vol. 115, no. 6, p. 590.

    Article  CAS  PubMed  Google Scholar 

  3. Tomai, P., Bosco, C.D., D’Orazio, G., et al., J. Chromatogr. Open, 2022, vol. 2, p. 100027.

    Article  Google Scholar 

  4. Losacco, G.L., Veuthey, J.-L., and Guillarme, D., TrAC, Trends Anal. Chem., 2021, vol. 141, p. 116304.

    Article  CAS  Google Scholar 

  5. Molineau, J., Hideux, M., and West, C., J. Pharm. Biomed. Anal., 2021, vol. 193, p. 113736.

    Article  CAS  PubMed  Google Scholar 

  6. Randall, L.G. and Wahrhaftig, A.L., Anal. Chem., 1978, vol. 50, p. 1703.

    Article  CAS  Google Scholar 

  7. Smith, R.D., Fjeldsted, J.C., and Lee, M.L., J. Chromatogr. A, 1982, vol. 247, p. 231.

    Article  CAS  Google Scholar 

  8. Perrenoud, A.G., Veuthey, J., and Guillarme, D., J. Chromatogr. A, 2014, vol. 1339, p. 174.

    Article  Google Scholar 

  9. Pinho, B., Girardon, S., Bazer-Bachi, F., et al., Lab Chip., 2014, vol. 14, p. 3843.

    Article  CAS  PubMed  Google Scholar 

  10. Klink, D. and Schmitz, O.J., Anal. Chem., 2016, vol. 88, no. 1, p. 1058.

    Article  CAS  PubMed  Google Scholar 

  11. Petruzziello, F., Perrenoud, A.G.-G., Thorimbert, A., et al., Anal. Chem., 2017, vol. 89, p. 7615.

    Article  CAS  PubMed  Google Scholar 

  12. Fujito, Y., Hayakawa, Y., Izumi, Y., et al., J. Chromatogr. A, 2017, vol. 1508, p. 138.

    Article  CAS  PubMed  Google Scholar 

  13. Duval, J., Colas, C., Pecher, V., et al., J. Chromatogr. A, 2017, vol. 1509, p. 132.

    Article  CAS  PubMed  Google Scholar 

  14. Thite, M.A., Boughtflower, R., Caldwell, J., et al., Rapid Commun. Mass Spectrom., 2008, vol. 22, p. 3673.

    Article  CAS  PubMed  Google Scholar 

  15. Wolrab, D., Fruhauf, P., and Gerner, C., Anal. Chim. Acta, 2017, vol. 981, p. 106.

    Article  CAS  PubMed  Google Scholar 

  16. Ovchinnikov, D.V., Ul’yanovskii, N.V., Falev, D.I., et al., J. Anal. Chem. 2021, vol. 76, no. 14. p. 1624.

    Article  CAS  Google Scholar 

  17. Guillarme, D., Desfontaine, V., Heinisch, S., et al., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2018, vol. 1083, p. 160.

    Article  CAS  Google Scholar 

  18. Ovchinnikov, D.V., Ul’yanovskii, N.V., Kosyakov, D.S., et al., J. Chromatogr. A, 2022, vol. 1665, p. 462820.

    Article  CAS  PubMed  Google Scholar 

  19. Houben, R.J., Leclercq, P.A., and Cramers, C.A., J. Chromatogr. A, 1991, vol. 554, p. 351.

    Article  CAS  Google Scholar 

  20. Ekeberg, D. and Jablonska-Jentoft, A.M., J. Am. Soc. Mass Spectrom., 2007, vol. 18, p. 2173.

    Article  CAS  PubMed  Google Scholar 

  21. Sadoun, F., Virelizier, H., and Arpino, P.J., J. Chromatogr. A, 1993, vol. 647, p. 351.

    Article  CAS  Google Scholar 

  22. Crepier, J., Le masle a., charon n., et al, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2018, vol. 1086, p. 38.

    Article  CAS  Google Scholar 

  23. Yoshioka, T., Nagatomi, Y., Harayama, K., et al., J. Biosci. Bioeng., 2018, vol. 126, no. 1, p. 126.

    Article  CAS  PubMed  Google Scholar 

  24. Parr, M.K., Wust, B., Teubel, J., et al., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2018, vol. 1091, p. 67.

    Article  CAS  Google Scholar 

  25. Anacleto, J.F., Ramaley, L., Boyd, R.K., et al., Rapid Commun. Mass Spectrom., 1991, vol. 5, p. 149.

    Article  CAS  Google Scholar 

  26. West, K.N., Wheeler, C., McCarney, J.P., et al., J. Phys. Chem. A, 2001, vol. 105, p. 3947.

    Article  CAS  Google Scholar 

  27. Song, L., Dykstra, A.B., Yao, H., et al., J. Am. Soc. Mass Spectrom., 2009, vol. 20, p. 42.

    Article  CAS  PubMed  Google Scholar 

  28. Skalny, J.D., Mikoviny, T., Matejcik, S., et al., Int. J. Mass Spectrom. Ion Processes, 2004, vol. 233, p. 317.

    Article  CAS  Google Scholar 

  29. Ewing, R.G. and Waltman, M.J., Int. J. Mass Spectrom. Ion Processes, 2010, vol. 296, p. 53.

    Article  CAS  Google Scholar 

  30. Cheng, S., Wang, W., Zhou, Q., et al., Anal. Chem., 2014, vol. 86, no. 5, p. 2687.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

In the work the equipment of the Core Facility Center “Arktika” of the Northern (Arctic) Federal University was used.

Funding

The work was supported by the Russian Science Foundation, project no. 21-73-00289.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Ovchinnikov or D. S. Kosyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, D.V., Vakhrameev, S.A., Semushina, M.P. et al. Supercritical Fluid Chromatography–Mass Spectrometry with Atmospheric Pressure Chemical Ionization: Negatively Charged Ions of Mobile Phase Components. J Anal Chem 78, 1829–1838 (2023). https://doi.org/10.1134/S1061934823130105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823130105

Keywords:

Navigation