Skip to main content
Log in

Stability Analysis of Polymerization Fronts

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we study the influence of certain parameters on the stability conditions of the reaction front in a liquid medium. The mathematical model consists of the heat equation, the concentration equation and the Navier–Stockes equation under the Boussinesq approximation. An asymptotic analysis was performed using the approximation proposed by Zeldovich and Frank–Kamentskii to obtain the interface problem. A stability analysis was carried out to obtain a linearized problem which will be solved numerically using a multiquadric radial basis function method to find the convective threshold. This will allow us to conclude the effect of each parameter on the stability of the front, in particular the amplitude and the resonance frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. P. M. Goldfeder, V. A. Volpert, V. M. Ilyashenko, A. M. Khan, J. A. Pojman, and S. E. Solovyov, “Mathematical modeling of free-radical polymerization fronts,” J. Phys. Chem. B 101, 3474–3482 (1997).

    Article  Google Scholar 

  2. N. M. Chechilo, R. Y. Khvilivitsky, and N. S. Enikolopyan, “The phenomenon of propagation of the polymerization reaction,” Dokl. Phys. Chem. 204, 512–513 (1972).

    Google Scholar 

  3. G. I. Barenblatt, Ya. B. Zeldovich, and A. G. Istratov, “Diffusive–thermal stability of a laminar flame,” Zh. Prikl. Mekh. Tekh. Fiz. 4, 21 (1962).

    Google Scholar 

  4. A. P. Aldushin and S. G. Kasparyan, “Thermodiffusional instability of a combustion front,” Sov. Phys. Dokl. 24, 29 (1979).

    Google Scholar 

  5. S. B. Margolis, H. G. Kaper, G. K. Leaf, and B. J. Matkowsky, “Bifurcation of pulsating and spinning reaction fronts in condensed two-phase combustion,” Combust. Sci. Technol. 43, 127–165 (1985).

    Article  Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987).

    Google Scholar 

  7. Y. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985).

    Book  Google Scholar 

  8. A. Istratov and V. B. Librovich, “Effect of the transfer processes on stability of a planar flame front,” J. Appl. Math. Mech. 30, 451–466 (1966).

    Article  Google Scholar 

  9. H. Rouah, L. Salhi, and A. Taik, “Influence of some critical parameters on the stability of reaction fronts in liquid medium,” Int. J. Model. Identif. Control 36, 42–56 (2020).

    Article  Google Scholar 

  10. M. Garbey, A. Taik, and V. Volpert, “Influence of natural convection on stability of reaction fronts in liquids,” Q. Appl. Math. 53, 1–35 (1998).

    Article  MathSciNet  Google Scholar 

  11. B. J. Matkowsky and G. I. Sivashinsky, “Acceleration effects on the stability of flame propagation,” SIAM J. Appl. Math. 37, 669–685 (1979).

    Article  MathSciNet  Google Scholar 

  12. M. Garbey, A. Taik, and V. Volpert, “Linear stability analysis of reaction fronts in liquids,” Q. Appl. Math. 54, 225–247 (1996).

    Article  MathSciNet  Google Scholar 

  13. K. Allali, V. Volpert, and J. A. Pojman, “Influence of vibrations on convective instability of polymerization fronts,” J. Eng. Math. 41, 13–31 (2001).

    Article  MathSciNet  Google Scholar 

  14. K. Allali, S. Assiyad, and M. Belhaq, “Convection of polymerization front with solid product under quasi-periodic gravitational modulation,” Nonlinear Dyn. Syst. Theory 14, 323–334 (2014).

    MathSciNet  Google Scholar 

  15. H. Aatif, K. Allali, and K. El Karouni, “Influence of vibrations on convective instability of reaction fronts in porous media,” Math. Model. Nat. Phenom. 5, 123–137 (2010).

    Article  MathSciNet  Google Scholar 

  16. K. Allali, M. Belhaq, and K. El Karouni, “Influence of quasi-periodic gravitational modulation on convective instability of reaction fronts in porous media,” Commun. Nonlinear Sci. Numer. Simul. 17, 1588–1596 (2012).

    Article  MathSciNet  Google Scholar 

  17. L. D. Su, Z. W. Jiang, and T. S. Jiang, “Numerical solution for a kind of nonlinear telegraph equations using radial basis functions,” Commun. Comput. Inf. Sci. 391, 140–149 (2013).

    Google Scholar 

  18. R. L. Hardy, “Multiquadric equations of topography and other irregular surfaces,” J. Geophys. Res. 76, 1905–1915 (1971).

    Article  Google Scholar 

  19. R. Franke, “A critical comparison of some methods for the interpolation of scattered data,” Technical Report (Naval Postgraduate School, New York, 1979).

    Google Scholar 

  20. G. E. Fasshauer and J. Zhang, “On choosing optimal shape parameters for RBF approximation,” Numer. Algorithms 45, 345–368 (2007).

    Article  MathSciNet  Google Scholar 

  21. J. A. Pojman, A. M. Khan, and L. J. Mathias, “Frontal polymerization in microgravity: Results from the conquest I sounding rocket flight,” Microgravity Sci. Technol. 10, 36 (1997).

    Google Scholar 

  22. Vl. A. Volpert, V. A. Volpert, V. M. Ilyashenko, and J. A. Pojman, “Frontal polymerization in a porous medium,” Chem. Eng. Sci. 53, 1655–1665 (1998).

  23. M. A. Mujeebu, M. Z. Abdullah, M. A. Bakar, A. A. Mohamad, R. M. N. Muhad, and M. K. Abdullah, “Combustion in porous media and its applications—a comprehensive survey,” J. Environ. Manage. 90, 2287–2312 (2009).

    Article  Google Scholar 

  24. Ya. B. Zeldovich and D. A. Frank Kamenetskii, “A theory of thermal propagation of flame,” Acta Physicochim. USSR 9, 341–350 (1938).

  25. A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).

    Google Scholar 

  26. D. A. Schult, “Matched asymptotic expansions and the closure problem for combustion waves,” SIAM J. Appl. Math. 60, 136–155 (2000).

    Article  MathSciNet  Google Scholar 

  27. F. Benkhaldoun, A. Halassi, D. Ouazar, M. Seaid, and A. Taik, “A stabilized meshless method for time-dependent convection-dominated flow problems,” Math. Comput. Simul. 137, 159–176 (2017).

    Article  MathSciNet  Google Scholar 

  28. Y. Alhuri, F. Benkhaldoun, D. Ouazar, M. Seaid, and A. Taik, “A meshless method for numerical simulation of depth-averaged turbulence flows using a k-ε model,” Int. J. Numer. Methods Fluids 80, 3–22 (2016).

    Article  MathSciNet  Google Scholar 

  29. K. Allali, Y. Joundy, A. Taik, and V. Volpert, “Dynamics of convective thermal explosion in porous media,” Int. J. Bifurcation Chaos 30, 2050081 (2020).

  30. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon, New York, 1966).

    Google Scholar 

  31. H. Han, J. Lu, and B. A. O. Weizhu, “A discrete artificial boundary condition for steady incompressible viscous flows in a no-slip channel using a fast iterative method,” J. Comput. Phys. 114, 201–208 (1994).

    Article  MathSciNet  Google Scholar 

  32. G. Bowden, M. Garbey, V. M. Ilyashenko, J. A. Pojman, S. E. Solovyov, A. Taik, and V. A. Volpert, “Effect of convection on a propagating front with a solid product: Comparison of theory and experiments,” J. Phys. Chem. B 101, 678–686 (1997).

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rouah.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joundy, Y., Rouah, H. & Taik, A. Stability Analysis of Polymerization Fronts. Comput. Math. and Math. Phys. 63, 2372–2383 (2023). https://doi.org/10.1134/S0965542523120138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523120138

Keywords:

Navigation