Skip to main content
Log in

Study of the Gardner Equation with Homogeneous Boundary Conditions via Fourth Order Modified Cubic B-Spline Collocation Method

  • GENERAL NUMERICAL METHODS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work, the well-known Gardner equation is converted into a coupled system of nonlinear partial differential equations and a modified cubic B-spline collocation method has been applied to find its numerical solution. Time discretization and linearization of Gardner equation has been carried out using Crank–Nicolson method and quasi-linearization respectively. A linear system of algebraic equations is obtained which is found to be unconditionally stable by Von Neumann analysis. Numerical investigations are performed on the Gardner equation subjected to homogeous boundary conditions in different situations such as propagation of initial positive pulse and kink like wave, propagation and interaction of two solitons, wave production from a single soliton, evolution of non-propagating solitons. The results obtained are compared with those available in the literature and are found to be better. The conserved quantities are also computed to show that the conservation laws are preserved as expected from the theoretical aspect. Numerical results demonstrate the accuracy and validity of the present method which can be further applied to solve other nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. O. Nakoulima, N. Zahibo, E. Pelinovsky, T. Talipova, A. Slunyaev, and A. Kurkin, “Analytical and numerical studies of the variable-coefficient Gardner equation,” Appl. Math. Comput. 152, 449–471 (2004).

    MathSciNet  Google Scholar 

  2. L. H. Zhang, L. H. Dong, and L. M. Yan, “Construction of non-travelling wave solutions for the generalized variable-coefficient Gardner equation,” Appl. Math. Comput. 203, 784–791 (2008).

    MathSciNet  Google Scholar 

  3. M. S. Ruderman, T. Talipova, and E. Pelinovsky, “Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions,” J. Plasma Phys. 74 (5), 639–656 (2008).

    Article  Google Scholar 

  4. A. M. Kamchatnov, Y. H. Kuo, T. C. Lin, T. L. Horng, S. C. Gou, R. Clift, G. A. El, and R. H. Grimshaw, “Undular bore theory for the Gardner equation,” Phys. Rev. E 86 (3), 036605 (2012).

  5. R. Grimshaw, E. Pelinovsky, T. Taipova, and A. Sergeeva, “Rogue internal waves in the ocean: Long wave model,” Eur. Phys. J. Spec. Top. 185 (1), 195–208 (2010).

    Article  Google Scholar 

  6. A. M. Kamchatnov, Y. H. Kuo, T. C. Lin, T. L. Horng, S. C. Gou, R. Clift, G. A. El, and R. H. Grimshaw, “Transcritical flow of a stratified fluid over topography: Analysis of the forced Gardner equation,” J. Fluid Mech. 736, 495–531 (2013).

    Article  Google Scholar 

  7. A. V. Slyunyaev and E. N. Pelinovski, “Dynamics of large-amplitude solitons,” J. Exp. Theor. Phys. 89 (1), 173–181 (1999).

    Article  Google Scholar 

  8. H. Hu, M. Tan, and X. Hu, “New interaction solutions to the combined KdV–mKdV equation from CTE method,” J. Assoc. Arab Univ. Basic Appl. Sci. 21, 64–67 (2016).

    Google Scholar 

  9. Y. Wei-Feng, L. Sen-Yue, Y. Jun, and H. Han-Wei, “Interactions between solitons and cnoidal periodic waves of the Gardner equation,” Chin. Phys. Lett. 31 (7) 070203 (2014).

  10. A. Biswas and E. Zerrad, “Soliton perturbation theory for the splitted regularized long wave equation,” Adv. Stud. Theor. Phys. 1 (5), 787 (2008).

    MathSciNet  Google Scholar 

  11. J. B. Zhou, J. Xu, J. D. Wei, and X. Q. Yang, “Solitary wave solution to a singularly perturbed generalized Gardner equation with nonlinear terms of any order,” Pramana J. Phys. 88, 69 (2017).

    Article  Google Scholar 

  12. A. Bekir, “On traveling wave solutions to combined KdV–mKdV equation and modified Burgers–KdV equation,” Commun. Nonlinear Sci. Numer. Simul. 14 (4), 1038–1042 (2009).

    Article  MathSciNet  Google Scholar 

  13. Z. Fu, S. Liu, and S. Liu, “New kinds of solutions to Gardner equation,” Chaos, Solitons Fractals 20 (2), 301–309 (2004).

    Article  MathSciNet  Google Scholar 

  14. H. L. Lu, X. Q. Liu, and L. Niu, “A generalized (G'/G)-expansion method and its applications to nonlinear evolution equations,” Appl. Math. Comput. 215 (11), 3811–3816 (2010).

    MathSciNet  Google Scholar 

  15. H. Naher and F. A. Abdullah, “Some new solutions of the combined KdV–MKdV equation by using the improved G'/G-expansion method,” World Appl. Sci. J. 16 (11), 1559–1570 (2012).

    Google Scholar 

  16. N. Taghizade and A. Neirameh, “The solutions of TRLW and Gardner equations by expansion method,” Int. J. Nonlinear Sci. 9 (3), 305–310 (2010).

    MathSciNet  Google Scholar 

  17. M. A. Akbar, N. Hj, and M. Ali, “New solitary and periodic solutions of nonlinear evolution equation by exp-function method,” World Appl. Sci. J. 17 (12), 1603–1610 (2012).

    Google Scholar 

  18. A. M. Wazwaz, “New solitons and kink solutions for the Gardner equation,” Commun. Nonlinear Sci. Numer. Simul. 12 (8), 1395–1404 (2007).

    Article  MathSciNet  Google Scholar 

  19. E. M. E. Zayed and M. A. M. Abdelaziz, “The two-variable (G'/G, 1/G)-expansion method for solving the nonlinear KdV–mKdV equation,” Math. Probl. Eng. 2012, 1–14 (2012).

    Article  MathSciNet  Google Scholar 

  20. A. J. M. Jawad, “New exact solutions of nonlinear partial differential equations using tan–cot function method,” Stud. Math. Sci. 5 (2), 13–25 (2012).

    Google Scholar 

  21. A. Jhangeer, A. Hussain, M. Junaid-U-Rehman, D. Baleanu, and M. Bilal Riaz, “Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation,” Chaos, Solitons Fractals 143, 110578 (2021).

  22. H. Nishiyama and T. Noi, “Conservative difference schemes for the numerical solution of the Gardner equation,” Comput. Appl. Math. 35 (1), 75–95 (2016).

    Article  MathSciNet  Google Scholar 

  23. T. M. Rageh, G. Salem, and F. A. El-Salam, “Restrictive Taylor approximation for Gardner and KdV equations,” Int. J. Adv. Appl. Math. Mech. 1 (3), 1–10 (2014).

    Google Scholar 

  24. N. M. Yagmurlu, O. Tasbozan, Y. Ucar, and A. Esen, “Numerical solutions of the combined KdV–MKdV equation by a quintic B-spline collocation method,” Appl. Math. Inf. Sci. Lett. 4 (1), 19–24 (2016).

    Google Scholar 

  25. W. Hu, Y. Gao, Z. Lan, C. Su, and Y. Feng, “Lattice Boltzmann model for a generalized Gardner equation with time-dependent variable coefficients,” Appl. Math. Model. 46, 126–140 (2017).

    Article  MathSciNet  Google Scholar 

  26. O. E. Hepson, A. Korkmaz, and I. Dag, “Numerical solutions of the Gardner equation by extended form of the cubic B-splines,” Pramana J. Phys. 91, 1–10 (2017).

    Google Scholar 

  27. O. E. Hepson, A. Korkmaz, and I. Dag, “Exponential B-spline collocation solutions to the Gardner equation,” Int. J. Comput. Math. 97, 837–850 (2020).

    Article  MathSciNet  Google Scholar 

  28. T. Ak, H. Triki, S. Dhawan, and K. S. Erduran, “Theoretical and numerical investigations on solitary wave solutions of Gardner equation,” Eur. Phys. J. Plus. 133, 1–14 (2018).

    Article  Google Scholar 

  29. A. Korkmaz, “Numerical algorithms for solutions of Korteweg–de Vries equation,” Numer. Methods Partial Differ. Equations 26, 1504–1521 (2009).

    Article  MathSciNet  Google Scholar 

  30. O. Oruç, F. Bulut, and A. Esen, “Numerical solution of the KdV equation by Haar wavelet method,” Pramana J. Phys. 87 (6), 94 (2016).

    Article  Google Scholar 

  31. K. J. Wang, “Traveling wave solutions of the Gardner equation in dusty plasmas,” Results Phys. 33, 105207 (2022).

  32. A. Singh, S. Dahiya, and S. P. Singh, “A fourth-order B-spline collocation method for nonlinear Burgers–Fisher equation,” Math. Sci. 14, 75–85 (2020).

    Article  MathSciNet  Google Scholar 

  33. T. R. Lucas, “Error bounds for interpolating cubic splines under various end conditions,” SIAM J. Numer. Anal. 11, 569–584 (1975).

    Article  MathSciNet  Google Scholar 

  34. S. Hamdi, B. Morse, B. Halphen, and W. Schiesser, “Conservation laws and invariants of motion for nonlinear internal waves: Part II,” Nat. Hazards 57, 597 (2011).

    Article  Google Scholar 

  35. A. Jeffrey and T. Kakutani, “Weak non-linear dispersive waves: A discussion centered around the KdV equation,” SIAM Rev. 14, 522 (1972).

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Dahiya, A. Singh or S. P. Singh.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahiya, S., Singh, A. & Singh, S.P. Study of the Gardner Equation with Homogeneous Boundary Conditions via Fourth Order Modified Cubic B-Spline Collocation Method. Comput. Math. and Math. Phys. 63, 2474–2491 (2023). https://doi.org/10.1134/S0965542523120096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523120096

Keywords:

Navigation