Skip to main content
Log in

Stability and Error Estimates of High Order BDF-LDG Discretizations for the Allen–Cahn Equation

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct high order local discontinuous Galerkin (LDG) discretizations coupled with third and fourth order backward differentiation formulas (BDF) for the Allen–Cahn equation. The numerical discretizations capture the advantages of linearity and high order accuracy in both space and time. We analyze the stability and error estimates of the time third-order and fourth-order BDF-LDG discretizations for numerically solving Allen–Cahn equation respectively. Theoretical analysis shows the stability and the optimal error results of theses numerical discretizations, in the sense that the time step τ requires only a positive upper bound and is independent of the mesh size h. A series of numerical examples show the correctness of the theoretical analysis. Comparison with the first-order numerical discretization illustrates that the high order BDF-LDG discretizations show good performance in solving stiff problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. Aderogba and M. Chapwanya, “An explicit nonstandard finite difference scheme for the Allen–Cahn equation,” J. Differ. Equations Appl. 21, 875–886 (2015).

    Article  MathSciNet  Google Scholar 

  2. G. Akrivis and B. Li, “Error estimates for fully discrete BDF finite element approximations of the Allen–Cahn equation,” IMA J. Numer. Anal. 42, 363–391 (2022).

    Article  MathSciNet  Google Scholar 

  3. S. Allen and J. Cahn, “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,” Acta Metall. 27, 1084–1095 (1979).

    Article  Google Scholar 

  4. W. Chen, X. Wang, Y. Yan, and Z. Zhang, “A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation,” SIAM J. Numer. Anal. 57, 495–525 (2019).

    Article  MathSciNet  Google Scholar 

  5. K. Cheng, C. Wang, S. Wise, and Y. Wu, “A third order accurate in time, BDF-type energy stable scheme for the Cahn–Hilliard equation,” Numer. Math. Theor. Methods Appl. 15, 279–303 (2022).

    Article  MathSciNet  Google Scholar 

  6. J. Choi, H. Lee, D. Jeong, and J. Kim, “An unconditionally gradient stable numerical method for solving the Allen–Cahn equation,” Physica A 388, 1791–1803 (2009).

    Article  MathSciNet  Google Scholar 

  7. B. Cockburn, G. Kanschat, I. Perugia, and D. Schötzau, “Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids,” SIAM J. Numer. Anal. 39, 264–285 (2001).

    Article  MathSciNet  Google Scholar 

  8. B. Cockburn and C.-W. Shu, “TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws: II. General framework,” Math. Comput. 52, 411–435 (1989).

    MathSciNet  Google Scholar 

  9. B. Cockburn and C.-W. Shu, “The local discontinuous Galerkin method for time-dependent convection–diffusion systems,” SIAM J. Numer. Anal. 35, 2440–2463 (1998).

    Article  MathSciNet  Google Scholar 

  10. B. Dong and C.-W. Shu, “Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems,” SIAM J. Numer. Anal. 47, 3240–3268 (2009).

    Article  MathSciNet  Google Scholar 

  11. J. Du, E. Chung, and Y. Yang, “Maximum-principle-preserving local discontinuous Galerkin methods for Allen–Cahn equations,” Commun. Appl. Math. Comput. 4, 353–379 (2022).

    Article  MathSciNet  Google Scholar 

  12. X. Feng and Y. Li, “Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow,” IMA J. Numer. Anal. 35, 1622–1651 (2015).

    Article  MathSciNet  Google Scholar 

  13. X. Feng, Y. Li, and Y. Zhang, “Finite element methods for the stochastic Allen–Cahn equation with gradient-type multiplicative noise,” IMA J. Numer. Anal. 55, 194–216 (2017).

    Article  MathSciNet  Google Scholar 

  14. R. H. Guo, L. Y. Ji, and Y. Xu, “High order local discontinuous Galerkin methods for the Allen–Cahn equation: Analysis and simulation,” J. Comput. Math. 34, 135–158 (2016).

    Article  MathSciNet  Google Scholar 

  15. R. Guo and Y. Xu, “Local discontinuous Galerkin method and high order semi-implicit scheme for the phase field crystal equation,” SIAM J. Sci. Comput. 38, A105–A127 (2016).

    Article  MathSciNet  Google Scholar 

  16. F. Huang and J. Shen, “A new class of implicit–explicit BDFk SAV schemes for general dissipative systems and their error analysis,” Comput. Methods Appl. Mech. Eng. 392, 114718 (2022).

  17. F. Huang and J. Shen, “Stability and error analysis of a class of high-order IMEX schemes for Navier–Stokes equations with periodic boundary conditions,” SIAM J. Numer. Anal. 59, 2926–2954 (2021).

    Article  MathSciNet  Google Scholar 

  18. L. Ju, X. Li, and Z. Qiao, “Stabilized exponential-SAV schemes preserving energy dissipation law and maximum bound principle for the Allen–Cahn type equations,” J. Sci. Comput. 92, 66 (2022).

    Article  MathSciNet  Google Scholar 

  19. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations (Springer-Verlag, Berlin, 1994).

    Book  Google Scholar 

  20. F. Liu and J. Shen, “Stabilized semi-implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations,” Math. Methods Appl. Sci. 38, 4564–4575 (2015).

    Article  MathSciNet  Google Scholar 

  21. J. Liu, “Simple and efficient ALE methods with provable temporal accuracy up to fifth order for the Stokes equations on time varying domains,” SIAM J. Numer. Anal. 51, 743–772 (2013).

    Article  MathSciNet  Google Scholar 

  22. W. Reed and T. Hill, “Triangular mesh method for the neutron transport equation,” Technical Report LA-UR-73-479 (Los Alamos Scientific Laboratory, Los Alamos, NM, 1973).

  23. L. Skvortsov, “Diagonally implicit Runge–Kutta methods for stiff problems,” Comput. Math. Math. Phys. 46, 2110–2123 (2006).

    Article  MathSciNet  Google Scholar 

  24. M. Tan, J. Cheng, and C.-W. Shu, “Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations,” J. Comput. Phys. 464, 111314 (2022).

  25. H. J. Wang, C.-W. Shu, and Q. Zhang, “Stability and error estimate of local discontinuous Galerkin methods with implicit-explicit time-marching for advection–diffusion problems,” SIAM J. Numer. Anal. 53, 206–227 (2015).

    Article  MathSciNet  Google Scholar 

  26. J. Wang, K. Pan, and X. Yang, “Convergence analysis of the fully discrete hybridizable discontinuous Galerkin method for the Allen–Cahn equation based on the invariant energy quadratization approach,” J. Sci. Comput. 91, 49 (2022).

    Article  MathSciNet  Google Scholar 

  27. F. Yan and Y. Xu, “Stability analysis and error estimates of local discontinuous Galerkin methods with semi-implicit spectral deferred correction time-marching for the Allen–Cahn equation,” J. Comput. Appl. Math. 376, 112857 (2020).

  28. H. Zhang, J. Yan, X. Qian, X. Chen, and S. Song, “Explicit third-order unconditionally structure-preserving schemes for conservative Allen–Cahn equations,” J. Sci. Comput. 90, 8 (2022).

    Article  MathSciNet  Google Scholar 

  29. J. Zhang and Q. Du, “Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit,” SIAM J. Sci. Comput. 31, 3042–3063 (2009).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the Fundamental Research Funds for the Central Universities JZ2021HGTA0179, JZ2022HGQA0157 and the National Natural Science Foundation of China (NSFC) grant 12201169.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengna Yan or Ziqiang Cheng.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

APPENDIX A

LDG DISCRETIZATIONS FOR \(u_{h}^{1},u_{h}^{2}\)

In order to better introduce the third order Runge–Kutta method, we set

$${{F}^{ + }}(\boldsymbol{\phi} ,{v}) = - (\boldsymbol{\phi} ,\nabla {v}) + \sum\limits_K {{({{\boldsymbol{\phi} }^{R}} \cdot \boldsymbol{\nu} ,{v})}_{{\partial K}}},$$
$$ {{F}^{ - }}({v},\boldsymbol{\phi} ) = - ({v},\nabla \cdot \boldsymbol{\phi} ) + \sum\limits_K {{({{{v}}^{L}},\boldsymbol{\nu} \cdot \boldsymbol{\phi} )}_{{\partial K}}}.$$

Assume that we know the numerical solution at time level n, the solution at time level n + 1 is obtained by the following equations [23].

$$\left( {\frac{{u_{h}^{{n + 1,1}} - u_{h}^{n}}}{\tau },{v}} \right) = \gamma \left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,1}}),{v}} \right)} \right),$$
(A.1a)
$$\left( {\frac{{u_{h}^{{n + 1,2}} - u_{h}^{n}}}{\tau },{v}} \right) = \frac{{1 - \gamma }}{2}\left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,1}}),{v}} \right)} \right)$$
$$ + \,\gamma \left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,2}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,2}}),{v}} \right)} \right),$$
(A.1b)
$$\left( {\frac{{u_{h}^{{n + 1}} - u_{h}^{n}}}{\tau },{v}} \right) = (1 - {{b}_{2}} - \gamma )\left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,1}}),{v}} \right)} \right)$$
$$ + \,{{b}_{2}}\left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,2}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,2}}),{v}} \right)} \right)$$
$$ + \,\gamma \left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1}}),{v}} \right)} \right),$$
(A.1c)
$$({\mathbf{q}}_{h}^{{n + 1,i}},{\mathbf{p}}) = {{F}^{ - }}(u_{h}^{{n + 1,i}},{\mathbf{p}}),\quad i = 1,2,$$
(A.1d)
$$({\mathbf{q}}_{h}^{{n + 1}},{\mathbf{p}}) = {{F}^{ - }}(u_{h}^{{n + 1}},{\mathbf{p}}),$$
(A.1e)

where \(\gamma = 0.435866521508,\;{{b}_{2}} = 0.25(5 - 20\gamma + 6{{\gamma }^{2}})\).

APPENDIX B

THE PROOF OF LEMMA 4

1.1 B.1. ERRORS EQUATIONS FOR \(u_{h}^{1},u_{h}^{2}\)

We give some notations to better present the error equations.

$${{E}_{1}}{{u}^{{n + 1}}} = \frac{{{{u}^{{n + 1,1}}} - {{u}^{n}}}}{\tau },\quad {{E}_{2}}{{u}^{{n + 1}}} = \frac{{{{u}^{{n + 1,2}}} - 2{{u}^{{n + 1,1}}} + {{u}^{n}}}}{\tau },\quad {{E}_{3}}{{u}^{{n + 1}}} = \frac{{2{{u}^{{n + 1}}} + {{u}^{{n + 1,2}}} - 3{{u}^{{n,1}}}}}{\tau }.$$

Motivated by the analysis in [25], we take the simple variations of –2*(1) + (2) and ‒3*(1) + (2) + 2*(4), the first three equations in (A.1) can be rewritten as follows:

$$\left( {{{E}_{1}}u_{h}^{{n + 1}},{v}} \right) = \gamma \left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,1}}),{v}} \right)} \right),$$
(B.1a)
$$\left( {{{E}_{2}}u_{h}^{{n + 1}},{v}} \right) = \frac{{1 - \gamma }}{2}\left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,1}}),{v}} \right)} \right)$$
$$ + \,\gamma \left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,2}} - 2{\mathbf{q}}_{h}^{{n + 1,1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,2}}) - 2f(u_{h}^{{n + 1,1}}),{v}} \right)} \right),$$
(B.1b)
$$\left( {{{E}_{3}}u_{h}^{{n + 1}},{v}} \right) = \left( {\frac{5}{2} + 2{{b}_{2}} - \frac{7}{2}\gamma } \right)\left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,1}}),{v}} \right)} \right)$$
$$ + \,(2{{b}_{2}} + \gamma )\left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1,2}} - 2{\mathbf{q}}_{h}^{{n + 1,1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1,2}}) - 2f(u_{h}^{{n + 1,1}}),{v}} \right)} \right)$$
$$ + \,2\gamma \left( {{{F}^{ + }}({\mathbf{q}}_{h}^{{n + 1}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f(u_{h}^{{n + 1}}),{v}} \right)} \right).$$
(B.1c)

For the error analysis, we write Eq. (1) in a similar form as in (A.1d)–(A.1e) and (B.1), then we have

$$\left( {{{E}_{1}}{{u}^{{n + 1}}},{v}} \right) = \gamma \left( {{{F}^{ + }}({{{\mathbf{q}}}^{{n + 1,1}}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,1}}}),{v}} \right)} \right),$$
(B.2a)
$$\left( {{{E}_{2}}{{u}^{{n + 1}}},{v}} \right) = \frac{{1 - \gamma }}{2}\left( {{{F}^{ + }}({{{\mathbf{q}}}^{{n + 1,1}}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,1}}}),{v}} \right)} \right)$$
$$\, + \gamma \left( {{{F}^{ + }}({{{\mathbf{q}}}^{{n + 1,2}}} - 2{{{\mathbf{q}}}^{{n + 1,1}}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,2}}}) - 2f({{u}^{{n + 1,1}}}),{v}} \right)} \right),$$
(B.2b)
$$\left( {{{E}_{3}}{{u}^{{n + 1}}},{v}} \right) = \left( {\frac{5}{2} + 2{{b}_{2}} - \frac{7}{2}\gamma } \right)\left( {{{F}^{ + }}({{{\mathbf{q}}}^{{n + 1,1}}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,1}}}),{v}} \right)} \right)$$
$$ + \,(2{{b}_{2}} + \gamma )\left( {{{F}^{ + }}({{{\mathbf{q}}}^{{n + 1,2}}} - 2{{{\mathbf{q}}}^{{n + 1,1}}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,2}}}) - 2f({{u}^{{n + 1,1}}}),{v}} \right)} \right)$$
$$ + \,2\gamma \left( {{{F}^{ + }}({{{\mathbf{q}}}^{{n + 1}}};{v}) - \frac{1}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1}}}),{v}} \right)} \right) + 2({{\tilde {\iota }}^{{n + 1}}},{v}),$$
(B.2c)
$$({{{\mathbf{q}}}^{{n + 1,i}}},{\mathbf{p}}) = {{F}^{ - }}({{u}^{{n + 1,i}}},{\mathbf{p}}),\quad i = 1,2,$$
(B.2d)
$$({{{\mathbf{q}}}^{{n + 1}}},{\mathbf{p}}) = {{F}^{ - }}({{u}^{{n + 1}}},{\mathbf{p}}),$$
(B.2e)

where \({\text{||}}{{\tilde {\iota }}^{{n + 1}}}{\text{||}} \leqslant C{{\tau }^{3}}\) is the local truncation error for the third order Runge–Kutta method [23, 25].

Subtracting (A.1d)–(A.1e), (B.1) from (B.1), we have the error equations

$$\left( {{{E}_{1}}e_{u}^{{n + 1}},{v}} \right) = \gamma {{F}^{ + }}(e_{{\mathbf{q}}}^{{n + 1,1}};{v}) - \frac{\gamma }{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,1}}}) - f(u_{h}^{{n + 1,1}}),{v}} \right),$$
(B.3a)
$$\left( {{{E}_{2}}e_{u}^{{n + 1}},{v}} \right) = \frac{{1 - \gamma }}{2}{{F}^{ + }}(e_{{\mathbf{q}}}^{{n + 1,1}};{v}) + \gamma {{F}^{ + }}(e_{{\mathbf{q}}}^{{n + 1,2}} - 2e_{{\mathbf{q}}}^{{n + 1,1}};{v})$$
$$ - \frac{{1 - \gamma }}{{2{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,1}}}) - f(u_{h}^{{n + 1,1}}),{v}} \right)$$
(B.3b)
$$ - \frac{\gamma }{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,2}}}) - 2f({{u}^{{n + 1,1}}}) - (f(u_{h}^{{n + 1,2}}) - 2f(u_{h}^{{n + 1,1}})),{v}} \right),$$
$$\left( {{{E}_{3}}e_{u}^{{n + 1}},{v}} \right) = \left( {\frac{5}{2} + 2{{b}_{2}} - \frac{7}{2}\gamma } \right){{F}^{ + }}(e_{{\mathbf{q}}}^{{n + 1,1}};{v}) + (2{{b}_{2}} + \gamma ){{F}^{ + }}(e_{{\mathbf{q}}}^{{n + 1,2}} - 2e_{{\mathbf{q}}}^{{n + 1,1}};{v})$$
$$ + \;2\gamma {{F}^{ + }}(e_{{\mathbf{q}}}^{{n + 1}};{v}) - \left( {\frac{5}{2} + 2{{b}_{2}} - \frac{7}{2}\gamma } \right)\frac{1}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,1}}}) - f(u_{h}^{{n + 1,1}}),{v}} \right)$$
$$ - \;\frac{{(2{{b}_{2}} + \gamma )}}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,2}}}) - f(u_{h}^{{n + 1,2}}) - (2f({{u}^{{n + 1,1}}}) - 2f(u_{h}^{{n + 1,1}})),{v}} \right)$$
$$ - \;\frac{{2\gamma }}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1}}}) - f(u_{h}^{{n + 1}}),{v}} \right) + 2({{\tilde {\iota }}^{{n + 1}}},{v}),$$
(B.3c)
$$(e_{{\mathbf{q}}}^{{n + 1,i}},{\mathbf{p}}) = {{F}^{ - }}(e_{u}^{{n + 1,i}},{\mathbf{p}}),\quad i = 1,2,$$
(B.3d)
$$(e_{{\mathbf{q}}}^{{n + 1}},{\mathbf{p}}) = {{F}^{ - }}(e_{u}^{{n + 1}},{\mathbf{p}}).$$
(B.3e)

1.2 B.2. ERROR ESTIMATES FOR \(u_{h}^{1},u_{h}^{2}\)

Let \({v} = P{{e}_{{{{u}^{{n + 1,1}}}}}},P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}},P{{e}_{{{{u}^{{n + 1}}}}}}\) in error Eqs. (B.3a)(B.3c) respectively, with (31)–(32) and the property of \(\Pi \) in Subsection 3.3, we have that

$$\frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1,1}}}}}} - P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}} - \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}}$$
$$ + \;\frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}} + P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}} - \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}}$$
$$ + \;{\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}} + P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}} - P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}}$$
$$ - \;\frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} - \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \gamma \tau {\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}}: = \sum\limits_{i = 1}^4 {{\mathcal{G}}_{i}},$$
(B.4)

where

$${{\mathcal{G}}_{1}} = - \tau \left( {{{E}_{1}}{{u}^{{n + 1}}} - {{E}_{1}}P{{u}^{{n + 1}}},P{{e}_{{{{u}^{{n + 1,1}}}}}}} \right) - \tau \left( {{{E}_{2}}{{u}^{{n + 1}}} - {{E}_{2}}P{{u}^{{n + 1}}},P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}}} \right)$$
$$ - \,\tau \left( {{{E}_{3}}{{u}^{{n + 1}}} - {{E}_{3}}P{{u}^{{n + 1}}},P{{e}_{{{{u}^{{n + 1}}}}}}} \right) + 2\tau ({{\tilde {\iota }}^{{n + 1}}},P{{e}_{{{{u}^{{n + 1}}}}}}),$$
$${{\mathcal{G}}_{2}} = \gamma \tau {{F}^{ - }}({{u}^{{n + 1,1}}} - P{{u}^{{n + 1,1}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}) + \frac{{1 - \gamma }}{2}\tau {{F}^{ - }}({{u}^{{n + 1,2}}} - P{{u}^{{n + 1,2}}} - 2({{u}^{{n + 1,1}}} - P{{u}^{{n + 1,1}}}),\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}})$$
$$ + \,\gamma \tau {{F}^{ - }}({{u}^{{n + 1,2}}} - P{{u}^{{n + 1,2}}} - 2({{u}^{{n + 1,1}}} - P{{u}^{{n + 1,1}}}),\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}})$$
$$ + \left( {\frac{5}{2} + 2{{b}_{2}} - \frac{7}{2}\gamma } \right)\tau {{F}^{ - }}({{u}^{{n + 1}}} - P{{u}^{{n + 1}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}) + \gamma \tau {{F}^{ - }}({{u}^{{n + 1}}} - P{{u}^{{n + 1}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}})$$
$$ + \,(2{{b}_{2}} + \gamma )\tau {{F}^{ - }}({{u}^{{n + 1}}} - P{{u}^{{n + 1}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}),$$
$${{\mathcal{G}}_{3}} = - \frac{\gamma }{{{{\varepsilon }^{2}}}}\tau (f({{u}^{{n + 1,1}}}) - f(u_{h}^{{n + 1,1}}),P{{e}_{{{{u}^{{n + 1,1}}}}}}) - \frac{{1 - \gamma }}{{2{{\varepsilon }^{2}}}}\tau \left( {f({{u}^{{n + 1,1}}}) - f(u_{h}^{{n + 1,1}}),P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}}} \right),$$
$$ - \frac{\gamma }{{{{\varepsilon }^{2}}}}\tau \left( {f({{u}^{{n + 1,2}}}) - 2f({{u}^{{n + 1,1}}}) - (f(u_{h}^{{n + 1,2}}) - 2f(u_{h}^{{n + 1,1}})),P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}}} \right)$$
$$ - \left( {\frac{5}{2} + 2{{b}_{2}} - \frac{7}{2}\gamma } \right)\tau \frac{1}{{{{\varepsilon }^{2}}}}\left( {f({{u}^{{n + 1,1}}}) - f(u_{h}^{{n + 1,1}}),P{{e}_{{{{u}^{{n + 1}}}}}}} \right) - \frac{{2\gamma }}{{{{\varepsilon }^{2}}}}\tau \left( {f({{u}^{{n + 1}}}) - f(u_{h}^{{n + 1}}),P{{e}_{{{{u}^{{n + 1}}}}}}} \right)$$
$$ - \frac{{(2{{b}_{2}} + \gamma )}}{{{{\varepsilon }^{2}}}}\tau \left( {f({{u}^{{n + 1,2}}}) - f(u_{h}^{{n + 1,2}}) - (2f({{u}^{{n + 1,1}}}) - 2f(u_{h}^{{n + 1,1}})),P{{e}_{{{{u}^{{n + 1}}}}}}} \right),$$
$${{\mathcal{G}}_{4}} = - \gamma \tau {\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} - \gamma \tau {\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} - \gamma \tau {\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}}$$
$$ - \frac{{1 - \gamma }}{2}\tau (\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}) - \left( {\frac{5}{2} + 2{{b}_{2}} - \frac{7}{2}\gamma } \right)\tau (\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}})$$
$$\, - (2{{b}_{2}} + \gamma )\tau (\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}),$$
$${{\mathcal{G}}_{5}} = - \gamma \tau ({{{\mathbf{q}}}^{{n + 1,1}}} - \Pi {{{\mathbf{q}}}^{{n + 1,1}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}) - \frac{{1 - \gamma }}{2}\tau ({{{\mathbf{q}}}^{{n + 1,2}}} - \Pi {{{\mathbf{q}}}^{{n + 1,2}}} - 2({{{\mathbf{q}}}^{{n + 1,1}}} - \Pi {{{\mathbf{q}}}^{{n + 1,1}}}),\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}})$$
$$ + \,\gamma \tau ({{{\mathbf{q}}}^{{n + 1,2}}} - \Pi {{{\mathbf{q}}}^{{n + 1,2}}} - 2({{{\mathbf{q}}}^{{n + 1,1}}} - \Pi {{{\mathbf{q}}}^{{n + 1,1}}}),\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}})$$
$$ - \left( {\frac{5}{2} + 2{{b}_{2}} - \frac{7}{2}\gamma } \right)\tau {{F}^{ - }}({{{\mathbf{q}}}^{{n + 1}}} - \Pi {{{\mathbf{q}}}^{{n + 1}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}) - \gamma \tau {{F}^{ - }}({{{\mathbf{q}}}^{{n + 1}}} - \Pi {{{\mathbf{q}}}^{{n + 1}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}})$$
$$ - \,(2{{b}_{2}} + \gamma )\tau {{F}^{ - }}({{{\mathbf{q}}}^{{n + 1}}} - \Pi {{{\mathbf{q}}}^{{n + 1}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}).$$

From the property of P in Subsection 3.3, we can see that

$${\text{|}}{{\mathcal{G}}_{1}}{\text{|}} \leqslant C\tau ({{h}^{{2k + 2}}} + {{\tau }^{6}}) + \epsilon \tau ({\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}}).$$

And in one-dimension, \({{\mathcal{G}}_{2}} = 0\). In multi-dimension

$${\text{|}}{{\mathcal{G}}_{2}}{\text{|}} \leqslant C{{h}^{{2k + 2}}}\tau + \epsilon \tau ({\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}})$$

with Lemma 3.

Using (19), (20) and the Lipschitz continuity property (2) of f yields

$${\text{|}}{{\mathcal{G}}_{3}} + {{\mathcal{G}}_{5}}{\text{|}} \leqslant \widetilde C\tau ({{h}^{{2k + 2}}} + {{\tau }^{6}}) + \epsilon \tau ({\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}})$$
$$ + \,\widetilde C\tau ({\text{||}}P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}})$$
$$ \leqslant \widetilde C\tau ({{h}^{{2k + 2}}} + {{\tau }^{6}}) + \epsilon \tau ({\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}}\, + {\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}})$$
$$ + \widetilde {\,C}\tau ({\text{||}}P{{e}_{{{{u}^{{n + 1,1}}}}}} - P{{e}_{{{{u}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}} + P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}}),$$

where \(\widetilde C\) depends on \(\varepsilon \) and \(\epsilon \) is a small enough positive constant generated by Young’s inequality.

Inserting the estimates of \({{\mathcal{G}}_{i}},i = 1,2,3,5\) and the expression of \({{\mathcal{G}}_{4}}\) into (B.4), we have that

$${\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}} - \;{\text{||}}P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}} + \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1,1}}}}}} - P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}} + \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}} + P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}}$$
$$ + \;\frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}} + P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \frac{1}{2}{\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}} - P{{e}_{{{{u}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \gamma \tau {\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}} - {{\mathcal{G}}_{4}}$$
$$ \leqslant \widetilde C\tau ({{h}^{{2k + 2}}} + {{\tau }^{6}}) + \widetilde C\tau ({\text{||}}P{{e}_{{{{u}^{{n + 1,1}}}}}} - P{{e}_{{{{u}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}P{{e}_{{{{u}^{{n + 1,2}}}}}} - 2P{{e}_{{{{u}^{{n + 1,1}}}}}} + P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}}$$
$$ + \;{\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}}\; + \;{\text{||}}P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}}) + \epsilon \tau ({\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \;{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \;{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}}).$$
(B.5)

We set \({\mathbf{X}} = (\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}},\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}})\), and \( - {{\mathcal{G}}_{4}} = \int_\Omega {\mathbf{X}}M{{{\mathbf{X}}}^{T}}dx\) with

$$M = \tau \left( {\begin{array}{*{20}{c}} \gamma &{\frac{{1 - \gamma }}{4}}&{\frac{5}{4} + {{b}_{2}} - \frac{7}{4}\gamma } \\ {\frac{{1 - \gamma }}{4}}&\gamma &{{{b}_{2}} + \frac{\gamma }{2}} \\ {\frac{5}{4} + {{b}_{2}} - \frac{7}{4}}&{{{b}_{2}} + \frac{\gamma }{2}}&\gamma \end{array}} \right).$$
(B.6)

With the values of \(\gamma \) and \({{b}_{2}}\) in (A.1), we can check that M is positive definite, which indicates \( - {{\mathcal{G}}_{4}} > 0\) and

$$ - {{\mathcal{G}}_{4}} - \epsilon \tau ({\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \;{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,2}}}}}} - 2\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1,1}}}}}}{\text{|}}{{{\text{|}}}^{2}}\; + \;{\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}}) \geqslant 0,$$

with \(\epsilon \) a small enough positive constant.

The from (B.5), we have that

$${\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}} - \,{\text{||}}P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}} + \gamma \tau {\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}} \leqslant \widetilde C\tau ({{h}^{{2k + 2}}} + {{\tau }^{6}}) + \widetilde C\tau ({\text{||}}P{{e}_{{{{u}^{{n + 1}}}}}}{\text{|}}{{{\text{|}}}^{2}} + \,{\text{||}}P{{e}_{{{{u}^{n}}}}}{\text{|}}{{{\text{|}}}^{2}}).$$
(B.7)

If \(\tau \leqslant {{\tau }_{0}}\), of which depends on \(\varepsilon \) but is independent of h, with (B.7) and the initial condition of \(u_{h}^{0}\) in (26), we can get

$${\text{||}}P{{e}_{{{{u}^{1}}}}}{\text{||}} + \,{\text{||}}P{{e}_{{{{u}^{2}}}}}{\text{||}} + \tau {\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{2}}}}}{\text{||}} + \tau {\text{||}}\Pi {{e}_{{{{{\mathbf{q}}}^{1}}}}}{\text{||}} \leqslant \widetilde C{{h}^{{k + 1}}} + \widetilde C{{\tau }^{3}},$$
(B.8)

which indicates the result (28) in Lemma 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Cheng, Z. Stability and Error Estimates of High Order BDF-LDG Discretizations for the Allen–Cahn Equation. Comput. Math. and Math. Phys. 63, 2551–2571 (2023). https://doi.org/10.1134/S0965542523120229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523120229

Keywords:

Navigation