Skip to main content

Advertisement

Log in

Therapeutic Strategies for Angiogenesis Based on Endothelial Cell Epigenetics

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

With the in-depth investigation of various diseases, angiogenesis has gained increasing attention. Among the contributing factors to angiogenesis research, endothelial epigenetics has emerged as an influential player. Endothelial epigenetic therapy exerts its regulatory effects on endothelial cells by controlling gene expression, RNA, and histone modification within these cells, which subsequently promotes or inhibits angiogenesis. As a result, this therapeutic approach offers potential strategies for disease treatment. The purpose of this review is to outline the pertinent mechanisms of endothelial cell epigenetics, encompassing glycolysis, lactation, amino acid metabolism, non-coding RNA, DNA methylation, histone modification, and their connections to specific diseases and clinical applications. We firmly believe that endothelial cell epigenetics has the potential to become an integral component of precision medicine therapy, unveiling novel therapeutic targets and providing new directions and opportunities for disease treatment.

Graphical Abstract

In recent years, with the deepening of people’s understanding of diseases, angiogenesis has been paid more and more attention. Endothelial cells, as the key cells in angiogenesis, play an important role in the field of angiogenesis research. Glycolysis, lactation, pentose phosphate pathway, amino acid metabolism, non-coding RNA, DNA methylation, histone modification, etc., all have an impact on endothelial cells and thus affect angiogenesis. Endothelial cell epigenetics is expected to become part of precision medicine treatments. Individual treatment plans can be implemented for patients, and precision medicine treatment strategies can be realized. Through epigenetic studies of endothelial cells, new drugs or therapeutic regimens can be developed for clinical application to reduce pain in patients and delay disease progression. Combined with other therapeutic strategies, it can control and guide the formation and reconstruction of blood vessels, and play different roles in different diseases such as diabetes, cardiovascular diseases, and tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sturtzel C. Endothelial cells. Adv Exp Med Biol. 2017;1003:71–91. https://doi.org/10.1007/978-3-319-57613-8_4.

    Article  CAS  PubMed  Google Scholar 

  2. Wegner M, Pioruńska-Stolzmann M, Jagodziński PP. The impact of chromatin modification on the development of chronic complications in patients with diabetes. Postepy Hig Med Dosw. 2015;69:964–8. https://doi.org/10.5604/17322693.1165198.

    Article  Google Scholar 

  3. Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med. 2013;32(4):763–7. https://doi.org/10.3892/ijmm.2013.1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng C, Wang Y, Xue Q, Huang Y, Wang X, Liao F, et al. CircRnas in atherosclerosis, with special emphasis on the spongy effect of circRnas on miRnas. Cell Cycle. 2023;22(5):527–41. https://doi.org/10.1080/15384101.2022.2133365.

    Article  CAS  PubMed  Google Scholar 

  5. Mesquita A, Matsuoka M, Lopes SA, Pernambuco FP, Cruz AS, Nader HB, et al. Nitric oxide regulates adhesiveness, invasiveness, and migration of anoikis-resistant endothelial cells. Braz J Med Biol Res. 2022;55:11612. https://doi.org/10.1590/1414-431X2021e11612.

    Article  Google Scholar 

  6. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis. 2023;14(7):410. https://doi.org/10.1038/s41419-023-05935-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shimokawa H. Reactive oxygen species in cardiovascular health and disease: special references to nitric oxide, hydrogen peroxide, and Rho-kinase. J Clin Biochem Nutri. 2020;66(2):83–91. https://doi.org/10.3164/jcbn.19-119.

    Article  CAS  Google Scholar 

  8. Dalal PJ, Muller WA, Sullivan DP. Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol. 2020;190(3):535–42. https://doi.org/10.1016/j.ajpath.2019.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wautier JL, Wautier MP. Vascular permeability in diseases. Int J Mol Sci. 2022;23(7):3645. https://doi.org/10.3390/ijms23073645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26(3):313–47. https://doi.org/10.1007/s10456-023-09876-7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Parmar D, Apte M. Angiopoietin inhibitors: a review on targeting tumor angiogenesis. Eur J Pharmacol. 2021;899:174021. https://doi.org/10.1016/j.ejphar.2021.174021.

    Article  CAS  PubMed  Google Scholar 

  12. Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8(5):471. https://doi.org/10.3390/cells8050471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dalton AC, Shlamkovitch T, Papo N, Barton WA. Constitutive association of Tie1 and Tie2 with endothelial integrins is functionally modulated by angiopoietin-1 and fibronectin. PLoS ONE. 2016;11(10):e0163732. https://doi.org/10.1371/journal.pone.0163732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han C, Barakat M, DiPietro LA. Angiogenesis in wound repair: too much of a good thing. Cold Spring Harb Perspect Biol. 2022;14(10):a041225. https://doi.org/10.1101/cshperspect.a041225.

    Article  CAS  PubMed  Google Scholar 

  15. Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res. 2021;117(5):1257–73. https://doi.org/10.1093/cvr/cvaa287.

    Article  CAS  PubMed  Google Scholar 

  16. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci: CMLS. 2020;77(9):1745–70. https://doi.org/10.1007/s00018-019-03351-7.

    Article  CAS  PubMed  Google Scholar 

  17. Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 2022;221:1428–38. https://doi.org/10.1016/j.ijbiomac.2022.09.129.

    Article  CAS  PubMed  Google Scholar 

  18. Kaštelan S, Orešković I, Bišćan F, Kaštelan H, Gverović AA. Inflammatory and angiogenic biomarkers in diabetic retinopathy. Biochemia Medica. 2020;30(3):030502. https://doi.org/10.11613/BM.2020.030502.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li Y. Modern epigenetics methods in biological research. Methods. 2021;187:104–13. https://doi.org/10.1016/j.ymeth.2020.06.022.

    Article  CAS  PubMed  Google Scholar 

  20. Peixoto P, Cartron PF, Serandour AA, Hervouet E. From 1957 to nowadays: a brief history of epigenetics. Int J Mol Sci. 2020;21(20):7571. https://doi.org/10.3390/ijms21207571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Greenberg M, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607. https://doi.org/10.1038/s41580-019-0159-6.

    Article  CAS  PubMed  Google Scholar 

  22. Bure IV, Nemtsova MV, Kuznetsova EB. Histone modifications and non-coding RNAs: mutual epigenetic regulation and role in pathogenesis. Int J Mol Sci. 2022;23(10):5801. https://doi.org/10.3390/ijms23105801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li L, Wang M, Ma Q, Ye J, Sun G. Role of glycolysis in the development of atherosclerosis. Am J Physiol Cell Physiol. 2022;323(2):C617–29. https://doi.org/10.1152/ajpcell.00218.2022.

    Article  CAS  PubMed  Google Scholar 

  24. He X, Zeng H, Chen JX. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease. J Cell Physiol. 2019;234(3):2252–65. https://doi.org/10.1002/jcp.27200.

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Sun X, Carmeliet P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 2019;30(3):414–33. https://doi.org/10.1016/j.cmet.2019.08.011.

    Article  CAS  PubMed  Google Scholar 

  26. Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol. 2021;599(1):23–37. https://doi.org/10.1113/JP280572.

    Article  CAS  PubMed  Google Scholar 

  27. Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019;20(24):6140. https://doi.org/10.3390/ijms20246140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sirover MA. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer Metastasis Rev. 2018;37(4):665–76. https://doi.org/10.1007/s10555-018-9764-7.

    Article  CAS  PubMed  Google Scholar 

  29. Chiche J, Ricci JE, Pouysségur J. Tumor hypoxia and metabolism – towards novel anticancer approaches. Ann Endocrinol. 2013;74(2):111–4. https://doi.org/10.1016/j.ando.2013.02.004.

    Article  CAS  Google Scholar 

  30. Zahra K, Dey T, Ashish MSP, Pandey U. Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis. Front Oncol. 2020;10:159. https://doi.org/10.3389/fonc.2020.00159.

    Article  PubMed  PubMed Central  Google Scholar 

  31. İlhan M. Non-metabolic functions of pyruvate kinase M2: PKM2 in tumorigenesis and therapy resistance. Neoplasma. 2022;69(4):747–54. https://doi.org/10.4149/neo_2022_220119N77.

    Article  PubMed  Google Scholar 

  32. Movahed ZG, Yarani R, Mohammadi P, Mansouri K. Sustained oxidative stress instigates differentiation of cancer stem cells into tumor endothelial cells: pentose phosphate pathway, reactive oxygen species and autophagy crosstalk. Biomed Pharmacother. 2021;139:111643. https://doi.org/10.1016/j.biopha.2021.111643.

    Article  CAS  PubMed  Google Scholar 

  33. TeSlaa T, Ralser M, Fan J, Rabinowitz JD. The pentose phosphate pathway in health and disease. Nat Metab. 2023;5(8):1275–89. https://doi.org/10.1038/s42255-023-00863-2.

    Article  CAS  PubMed  Google Scholar 

  34. Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The role of the pentose phosphate pathway in diabetes and cancer. Front Endocrinol. 2020;11:365. https://doi.org/10.3389/fendo.2020.00365.

    Article  Google Scholar 

  35. Gao Y, Zhou H, Liu G, Wu J, Yuan Y, Shang A. Tumor microenvironment: lactic acid promotes tumor development. J Immunol Res. 2022;2022:3119375. https://doi.org/10.1155/2022/3119375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar VB, Viji RI, Kiran MS, Sudhakaran PR. Endothelial cell response to lactate: implication of PAR modification of VEGF. J Cell Physiol. 2007;211(2):477–85. https://doi.org/10.1002/jcp.20955.

    Article  CAS  PubMed  Google Scholar 

  37. Thakur A, Qiu G, Xu C, Han X, Yang T, Ng SP, et al. Label-free sensing of exosomal MCT1 and CD147 for tracking metabolic reprogramming and malignant progression in glioma. Sci Adv. 2020;6(26):eaaz6119. https://doi.org/10.1126/sciadv.aaz6119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev. 2019;38(1–2):93–101. https://doi.org/10.1007/s10555-019-09783-8.

    Article  CAS  PubMed  Google Scholar 

  39. Nagao A, Kobayashi M, Koyasu S, Chow C, Harada H. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci. 2019;20(2):238. https://doi.org/10.3390/ijms20020238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh L, Aldosary S, Saeedan AS, Ansari MN, Kaithwas G. Prolyl hydroxylase 2: a promising target to inhibit hypoxia-induced cellular metabolism in cancer cells. Drug Discovery Today. 2018;23(11):1873–82. https://doi.org/10.1016/j.drudis.2018.05.016.

    Article  CAS  PubMed  Google Scholar 

  41. Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 2020;206:107451. https://doi.org/10.1016/j.pharmthera.2019.107451.

    Article  CAS  PubMed  Google Scholar 

  42. Baltazar F, Afonso J, Costa M, Granja S. Lactate beyond a waste metabolite: metabolic affairs and signaling in malignancy. Front Oncol. 2020;10:231. https://doi.org/10.3389/fonc.2020.00231.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Micaily I, Roche M, Ibrahim MY, Martinez-Outschoorn U, Mallick AB. Metabolic pathways and targets in chondrosarcoma. Front Oncol. 2021;11:772263. https://doi.org/10.3389/fonc.2021.772263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dunaway LS, Pollock JS. HDAC1: an environmental sensor regulating endothelial function. Cardiovasc Res. 2022;118(8):1885–903. https://doi.org/10.1093/cvr/cvab198.

    Article  CAS  PubMed  Google Scholar 

  45. Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, Brüning U, et al. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J. 2017;36(16):2334–52. https://doi.org/10.15252/embj.201695518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Molecular. Metabolism. 2020;33:48–66. https://doi.org/10.1016/j.molmet.2019.07.006.

    Article  CAS  Google Scholar 

  47. DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24. https://doi.org/10.1038/onc.2009.358.

    Article  CAS  PubMed  Google Scholar 

  48. Kucharzewska P, Welch JE, Svensson KJ, Belting M. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells. Exp Cell Res. 2010;316(16):2683–91. https://doi.org/10.1016/j.yexcr.2010.05.033.

    Article  CAS  PubMed  Google Scholar 

  49. Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM. Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation. 2002;105(18):2185–91. https://doi.org/10.1161/01.cir.0000015856.84385.e9.

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Kumar A, Carmeliet P. Metabolic pathways fueling the endothelial cell drive. Annu Rev Physiol. 2019;81:483–503. https://doi.org/10.1146/annurev-physiol-020518-114731.

    Article  CAS  PubMed  Google Scholar 

  51. Rana T. Influence and implications of the molecular paradigm of nitric oxide underlying inflammatory reactions of the gastrointestinal tract of dog: a major hallmark of inflammatory bowel disease. Inflamm Bowel Dis. 2022;28(8):1280–8. https://doi.org/10.1093/ibd/izac017.

    Article  PubMed  Google Scholar 

  52. Özdemir BH, Özdemir AA. How exercise affects the development and progression of hepatocellular carcinoma by changing the biomolecular status of the tumor microenvironment. Exp Clin Transplant: Off J Middle East Soc Organ Transplant. 2022. https://doi.org/10.6002/ect.2021.0456.

    Article  Google Scholar 

  53. Laukkanen S, Veloso A, Yan C, Oksa L, Alpert EJ, Do D, et al. Therapeutic targeting of LCK tyrosine kinase and mTOR signaling in T-cell acute lymphoblastic leukemia. Blood. 2022;140(17):1891–906. https://doi.org/10.1182/blood.2021015106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang JJ, Hsieh JJ. The therapeutic landscape of renal cell carcinoma: from the Dark Age to the Golden Age. Semin Nephrol. 2020;40(1):28–41. https://doi.org/10.1016/j.semnephrol.2019.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic regulation of angiogenesis in development and tumors progression: potential implications for cancer treatment. Front Cell Dev Biol. 2021;9:689962. https://doi.org/10.3389/fcell.2021.689962.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xie Z, Zhou Z, Yang S, Zhang S, Shao B. Epigenetic regulation and therapeutic targets in the tumor microenvironment. Mol Biomed. 2023;4(1):17. https://doi.org/10.1186/s43556-023-00126-2.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010;70:27–56. https://doi.org/10.1016/B978-0-12-380866-0.60002-2.

    Article  PubMed  Google Scholar 

  58. Gaur P, Hunt CR, Pandita TK. Emerging therapeutic targets in esophageal adenocarcinoma. Oncotarget. 2016;7(30):48644–55. https://doi.org/10.18632/oncotarget.8777.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kaz AM, Grady WM. Epigenetic biomarkers in esophageal cancer. Cancer Lett. 2014;342(2):193–9. https://doi.org/10.1016/j.canlet.2012.02.036.

    Article  CAS  PubMed  Google Scholar 

  60. Das D, Karthik N, Taneja R. Crosstalk between inflammatory signaling and methylation in cancer. Front Cell Dev Biol. 2021;9:756458. https://doi.org/10.3389/fcell.2021.756458.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mohammed FH, Cemic F, Hemberger J, Giri S. Biological skin regeneration using epigenetic targets. Drug Discovery Today. 2023;28(4):103495. https://doi.org/10.1016/j.drudis.2023.103495.

    Article  CAS  PubMed  Google Scholar 

  62. Bhat SM, Prasad PR, Joshi MB. Novel insights into DNA methylation-based epigenetic regulation of breast tumor angiogenesis. Int Rev Cell Mol Biol. 2023;380:63–96. https://doi.org/10.1016/bs.ircmb.2023.04.002.

    Article  PubMed  Google Scholar 

  63. Dubey R, Prabhakar PK, Gupta J. Epigenetics: key to improve delayed wound healing in type 2 diabetes. Mol Cell Biochem. 2022;477(2):371–83. https://doi.org/10.1007/s11010-021-04285-0.

    Article  CAS  PubMed  Google Scholar 

  64. Su W, Huo Q, Wu H, Wang L, Ding X, Liang L, et al. The function of LncRNA-H19 in cardiac hypertrophy. Cell Biosci. 2021;11(1):153. https://doi.org/10.1186/s13578-021-00668-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Voellenkle C, Garcia-Manteiga JM, Pedrotti S, Perfetti A, De Toma I, Da Silva D, et al. Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci Rep. 2016;6:24141. https://doi.org/10.1038/srep24141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu A, Chu L, Ma Q, Li Y. Long non-coding RNA H19 down-regulates miR-181a to facilitate endothelial angiogenic function. Artif Cells, Nanomed Biotechnol. 2019;47(1):2698–705. https://doi.org/10.1080/21691401.2019.1634577.

    Article  CAS  PubMed  Google Scholar 

  67. Shi X, Wei YT, Li H, Jiang T, Zheng XL, Yin K, et al. Long non-coding RNA H19 in atherosclerosis: what role. Mol Med. 2020;26(1):72. https://doi.org/10.1186/s10020-020-00196-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang Y, Yang M, Yang S, Hong F. Role of noncoding RNAs and untranslated regions in cancer: a review. Medicine. 2022;101(33):e30045. https://doi.org/10.1097/MD.0000000000030045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G, Zhu YS. MALAT1: a potential biomarker in cancer. Cancer Manag Res. 2018;10:6757–68. https://doi.org/10.2147/CMAR.S169406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Braga EA, Fridman MV, Burdennyy AM, Filippova EA, Loginov VI, Pronina IV, et al. Regulation of the key epithelial cancer suppressor miR-124 function by competing endogenous RNAs. Int J Mol Sci. 2022;23(21):13620. https://doi.org/10.3390/ijms232113620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. He B, Peng F, Li W, Jiang Y. Interaction of lncRNA-MALAT1 and miR-124 regulates HBx-induced cancer stem cell properties in HepG2 through PI3K/Akt signaling. J Cell Biochem. 2019;120(3):2908–18. https://doi.org/10.1002/jcb.26823.

    Article  CAS  PubMed  Google Scholar 

  72. Du M, Chen W, Zhang W, Tian XK, Wang T, Wu J, et al. TGF-β regulates the ERK/MAPK pathway independent of the SMAD pathway by repressing miRNA-124 to increase MALAT1 expression in nasopharyngeal carcinoma. Biomed Pharmacother. 2018;99:688–96. https://doi.org/10.1016/j.biopha.2018.01.120.

    Article  CAS  PubMed  Google Scholar 

  73. Al-Rugeebah A, Alanazi M, Parine NR. MEG3: an oncogenic long non-coding RNA in different cancers. Pathol Oncol Res: POR. 2019;25(3):859–74. https://doi.org/10.1007/s12253-019-00614-3.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang L, Zhao F, Li W, Song G, Kasim V, Wu S. The biological roles and molecular mechanisms of long non-coding RNA MEG3 in the hallmarks of cancer. Cancers. 2022;14(24):6032. https://doi.org/10.3390/cancers14246032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao Y, Liu Y, Zhang Q, Liu H, Xu J. The mechanism underlying the regulation of long non-coding RNA MEG3 in cerebral ischemic stroke. Cell Mol Neurobiol. 2023;43(1):69–78. https://doi.org/10.1007/s10571-021-01176-2.

    Article  CAS  PubMed  Google Scholar 

  76. Yang QY, Yu Q, Zeng WY, Zeng M, Zhang XL, Zhang YL, et al. Killing two birds with one stone: miR-126 involvement in both cancer and atherosclerosis. Eur Rev Med Pharmacol Sci. 2022;26(17):6145–68. https://doi.org/10.26355/eurrev_202209_29632.

    Article  PubMed  Google Scholar 

  77. Soofiyani SR, Hosseini K, Ebrahimi T, Forouhandeh H, Sadeghi M, Beirami SM, et al. Prognostic value and biological role of miR-126 in breast cancer. MicroRNA (Shariqah, United Arab Emirates). 2022;11(2):95–103. https://doi.org/10.2174/1876402914666220428123203.

    Article  CAS  PubMed  Google Scholar 

  78. Tirpe A, Gulei D, Tirpe GR, Nutu A, Irimie A, Campomenosi P, et al. Beyond conventional: the new horizon of anti-angiogenic microRNAs in non-small cell lung cancer therapy. Int J Mol Sci. 2020;21(21):8002. https://doi.org/10.3390/ijms21218002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xie J, Wu W, Zheng L, Lin X, Tai Y, Wang Y, et al. Roles of microRNA-21 in skin wound healing: a comprehensive review. Front Pharmacol. 2022;13:828627. https://doi.org/10.3389/fphar.2022.828627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maryam M, Naemi M, Hasani SS. A comprehensive review on oncogenic miRNAs in breast cancer. J Gen. 2021;100:15.

    Article  Google Scholar 

  81. Amini S, Abak A, Sakhinia E, Abhari A. MicroRNA-221 and microRNA-222 in common human cancers: expression, function, and triggering of tumor progression as a key modulator. Lab Med. 2019;50(4):333–47. https://doi.org/10.1093/labmed/lmz002.

    Article  PubMed  Google Scholar 

  82. Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: a systematic review. Mol Ther Nucleic Acids. 2022;27:1191–224. https://doi.org/10.1016/j.omtn.2022.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li G, Tian Y, Zhu WG. The roles of histone deacetylases and their inhibitors in cancer therapy. Front Cell Dev Biol. 2020;8:576946. https://doi.org/10.3389/fcell.2020.576946.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, et al. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol. 2022;931:175216. https://doi.org/10.1016/j.ejphar.2022.175216.

    Article  CAS  PubMed  Google Scholar 

  85. Qiu X, Zhu L, Wang H, Tan Y, Yang Z, Yang L, et al. From natural products to HDAC inhibitors: an overview of drug discovery and design strategy. Bioorg Med Chem. 2021;52:116510. https://doi.org/10.1016/j.bmc.2021.116510.

    Article  CAS  PubMed  Google Scholar 

  86. Wasik A, Ratajczak-Wielgomas K, Badzinski A, Dziegiel P, Podhorska-Okolow M. The role of periostin in angiogenesis and lymphangiogenesis in tumors. Cancers. 2022;14(17):4225. https://doi.org/10.3390/cancers14174225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997–2007. https://doi.org/10.3892/etm.2020.8454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Revathidevi S, Munirajan AK. Akt in cancer: mediator and more. Semin Cancer Biol. 2019;59:80–91. https://doi.org/10.1016/j.semcancer.2019.06.002.

    Article  CAS  PubMed  Google Scholar 

  89. Makkar R, Behl T, Arora S. Role of HDAC inhibitors in diabetes mellitus. Curr Res Transl Med. 2020;68(2):45–50. https://doi.org/10.1016/j.retram.2019.08.001.

    Article  PubMed  Google Scholar 

  90. Rabellino A, Andreani C, Scaglioni PP. Roles of ubiquitination and SUMOylation in the regulation of angiogenesis. Curr Issues Mol Biol. 2020;35:109–26. https://doi.org/10.21775/cimb.035.109.

    Article  PubMed  Google Scholar 

  91. Wang M, Jiang X. The significance of SUMOylation of angiogenic factors in cancer progression. Cancer Biol Ther. 2019;20(2):130–7. https://doi.org/10.1080/15384047.2018.1523854.

    Article  CAS  PubMed  Google Scholar 

  92. Ou K, Yu M, Moss NG, Wang YJ, Wang AW, Nguyen SC, et al. Targeted demethylation at the CDKN1C/p57 locus induces human β cell replication. J Clin Investig. 2019;129(1):209–14. https://doi.org/10.1172/JCI99170.

    Article  PubMed  Google Scholar 

  93. Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–44. https://doi.org/10.1016/j.cmet.2019.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Crescenti A, Solà R, Valls RM, Caimari A, Del Bas JM, Anguera A, et al. Cocoa consumption alters the global DNA methylation of peripheral leukocytes in humans with cardiovascular disease risk factors: a randomized controlled trial. PLoS ONE. 2013;8(6):e65744. https://doi.org/10.1371/journal.pone.0065744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guay SP, Légaré C, Houde AA, Mathieu P, Bossé Y, Bouchard L. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clin Epigenetics. 2014;6(1):14. https://doi.org/10.1186/1868-7083-6-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arunachalam G, Yao H, Sundar IK, Caito S, Rahman I. SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: role of resveratrol. Biochem Biophys Res Commun. 2010;393(1):66–72. https://doi.org/10.1016/j.bbrc.2010.01.080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51. https://doi.org/10.1056/NEJMoa1609243.

    Article  CAS  PubMed  Google Scholar 

  98. Zeng J, Zhang J, Sun Y, Wang J, Ren C, Banerjee S, et al. Targeting EZH2 for cancer therapy: from current progress to novel strategies. Eur J Med Chem. 2022;238:114419. https://doi.org/10.1016/j.ejmech.2022.114419.

    Article  CAS  PubMed  Google Scholar 

  99. Guo J, Zheng Q, Peng Y. BET proteins: biological functions and therapeutic interventions. Pharmacol Ther. 2023;243:108354. https://doi.org/10.1016/j.pharmthera.2023.108354.

    Article  CAS  PubMed  Google Scholar 

  100. Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res: MCR. 2007;5(10):981–9. https://doi.org/10.1158/1541-7786.MCR-07-0324.

    Article  CAS  PubMed  Google Scholar 

  101. Quintás-Cardama A, Santos FP, Garcia-Manero G. Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Leukemia. 2011;25(2):226–35. https://doi.org/10.1038/leu.2010.276.

    Article  CAS  PubMed  Google Scholar 

  102. Eleutherakis-Papaiakovou E, Kanellias N, Kastritis E, Gavriatopoulou M, Terpos E, Dimopoulos MA. Efficacy of panobinostat for the treatment of multiple myeloma. J Oncol. 2020;2020:7131802. https://doi.org/10.1155/2020/7131802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sawas A, Radeski D, O’Connor OA. Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review. Ther Adv Hematol. 2015;6(4):202–8. https://doi.org/10.1177/2040620715592567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All figures were created in BioRender.com.

Funding

This study was supported by the National Natural Science Foundation of China (82070455, 82370457) and the Key Research and Development Project of Jiangsu Province (BE2022780).

Author information

Authors and Affiliations

Authors

Contributions

Yue Cai designed, collected, and interpreted the data and drafted, revised, and approved the manuscript; Lihua Li, Chen Shao, Yiliu Chen, and Zhongqun Wang interpreted the data and drafted, revised, and approved the manuscript.

Corresponding author

Correspondence to Zhongqun Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Judith C. Sluimer oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Li, L., Shao, C. et al. Therapeutic Strategies for Angiogenesis Based on Endothelial Cell Epigenetics. J. of Cardiovasc. Trans. Res. (2024). https://doi.org/10.1007/s12265-024-10485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-024-10485-y

Keywords

Navigation