Skip to main content
Log in

Global optimization of optimal Delaunay triangulation with modified whale optimization algorithm

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, we introduce an innovative approach to generate a high-quality mesh with a density function in a given domain. Our method involves solving a variational problem that optimizes the energy function of the optimal Delaunay triangulation (ODT). To achieve this, we have developed a modified whale optimization algorithm (MWOA) based population that is combined with the quasi-Newton method (L-BFGS) to optimize ODT energy on a global level. Our experiments have demonstrated the impressive efficiency of this optimization algorithm in searching for better minima and producing high-quality meshes. Remarkably, the algorithm’s powerful global optimization capability makes it insensitive to initialization, which eliminates the need for any special initialization procedures. Furthermore, our proposed algorithm can easily handle complex domains and non-uniform density functions, making it a versatile tool for mesh generation. Overall, our method offers a promising solution for generating practicable meshes with a density function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request.

References

  1. Carey GF (1997) Computational grids: generations, adaptation & solution strategies. CRC Press, Boca Raton

    Google Scholar 

  2. Teng SH, Wong CW (2000) Unstructured mesh generation: theory, practice, and perspectives. Int J Comput Geom Appl 10(03):227–266

    Article  MathSciNet  Google Scholar 

  3. Baker TJ (2005) Mesh generation: art or science? Prog Aerosp Sci 41(1):29–63

    Article  Google Scholar 

  4. Zhang Y (2013) Challenges and advances in image-based geometric modeling and mesh generation. Springer, Berlin

    Book  Google Scholar 

  5. Zhang YJ (2018) Geometric modeling and mesh generation from scanned images. CRC Press, Boca Raton

    Google Scholar 

  6. Shewchuk JR (2012) Unstructured mesh generation. Comb Sci Comput 12(257):2

    MathSciNet  Google Scholar 

  7. Owen SJ (1998) A survey of unstructured mesh generation technology. IMR 239(267):15

    Google Scholar 

  8. Alliez P, De Verdière ÉC, Devillers O et al (2005) Centroidal Voronoi diagrams for isotropic surface remeshing. Graph Model 67(3):204–231

    Article  Google Scholar 

  9. Hu Y, Schneider T, Gao X et al (2019) Triwild: robust triangulation with curve constraints. ACM Trans Graph (TOG) 38(4):1–15

    Article  Google Scholar 

  10. George JA (1971) Computer implementation of the finite element method. Stanford University, Stanford

    Google Scholar 

  11. Zhou Q, Wang Q, Yu Z (2022) SAFT: shotgun advancing front technique for massively parallel mesh generation on graphics processing unit. Int J Numer Methods Eng 123(18):4391–4406

    Article  MathSciNet  Google Scholar 

  12. Yerry M, Shephard M (1983) A modified quadtree approach to finite element mesh generation. Comput Graph Appl 3(01):39–46

    Article  Google Scholar 

  13. Jaillet F, Lobos C (2022) Fast quadtree/octree adaptive meshing and re-meshing with linear mixed elements. Eng Comput 38(4):3399–3416

    Article  Google Scholar 

  14. Aurenhammer F, Klein R, Lee DT (2013) Voronoi diagrams and Delaunay triangulations. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  15. Cheng SW, Dey TK, Shewchuk J et al (2013) Delaunay mesh generation. CRC Press, Boca Raton

    Google Scholar 

  16. Guo J, Yan DM, Chen L et al (2016) Tetrahedral meshing via maximal Poisson-disk sampling. Comput Aided Geom Des 43:186–199

    Article  MathSciNet  Google Scholar 

  17. Liang X, Zhang Y (2014) An octree-based dual contouring method for triangular and tetrahedral mesh generation with guaranteed angle range. Eng Comput 30:211–222

    Article  Google Scholar 

  18. Canann SA, Stephenson MB, Blacker T (1993) Optismoothing: an optimization-driven approach to mesh smoothing. Finite Elem Anal Des 13(2–3):185–190

    Article  MathSciNet  Google Scholar 

  19. Canann SA, Muthukrishnan S, Phillips R (1996) Topological refinement procedures for triangular finite element meshes. Eng Comput 12(3):243–255

    Article  Google Scholar 

  20. Chen L, Xu J (2004) Optimal Delaunay triangulations. J Comput Math 22:299–308

    MathSciNet  Google Scholar 

  21. Chen Z, Wang W, Lévy B et al (2014) Revisiting optimal Delaunay triangulation for 3D graded mesh generation. SIAM J Sci Comput 36:A930–A954

    Article  MathSciNet  Google Scholar 

  22. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  23. Abdel-Basset M, Mohamed R, AbdelAziz NM et al (2022) HWOA: a hybrid whale optimization algorithm with a novel local minima avoidance method for multi-level thresholding color image segmentation. Expert Syst Appl 190:116145

    Article  Google Scholar 

  24. Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev 41(4):637–676

    Article  MathSciNet  Google Scholar 

  25. Chen L (2004) Mesh smoothing schemes based on optimal Delaunay triangulations. IMR 109–120

  26. Alliez P, Cohen-Steiner D, Yvinec M et al (2005) Variational tetrahedral meshing. In: ACM SIGGRAPH 2005 papers, pp 617–625

  27. Tournois J, Wormser C, Alliez P et al (2009) Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Trans Graph (TOG) 28(3):1–9

    Article  Google Scholar 

  28. Gao Z, Yu Z, Holst M (2012) Quality tetrahedral mesh smoothing via boundary-optimized Delaunay triangulation. Comput Aided Geom Des 29(9):707–721

    Article  MathSciNet  Google Scholar 

  29. Chen L, Holst M (2011) Efficient mesh optimization schemes based on optimal Delaunay triangulations. Comput Methods Appl Mech Eng 200(9–12):967–984

    Article  MathSciNet  Google Scholar 

  30. Chen Z, Cao J, Yang C (2011) Topology improvement for constructing optimal Delaunay triangulation. J Comput-Aided Des Comput Graph 23:1967–1974

    Google Scholar 

  31. Yq Hai, Yf Guo, Dong M et al (2022) Enhanced optimal Delaunay triangulation methods with connectivity regularization. Appl Math-A J Chin Univ 37(3):453–469

    Article  MathSciNet  Google Scholar 

  32. Chen L, Sun P, Xu J (2007) Optimal anisotropic meshes for minimizing interpolation errors in \(L^{p}\) norm. Math Comput 76(257):179–204

    Article  Google Scholar 

  33. Feng L, Alliez P, Busé L et al (2018) Curved optimal Delaunay triangulation. ACM Trans Graph (TOG) 37(4):1–16

    Article  Google Scholar 

  34. Yan DM, Wang W, Lévy B et al (2013) Efficient computation of clipped Voronoi diagram for mesh generation. Comput Aided Des 45(4):843–852

    Article  MathSciNet  Google Scholar 

  35. Chen Z, Zhang T, Cao J et al (2018) Point cloud resampling using centroidal Voronoi tessellation methods. Comput Aided Des 102:12–21

    Article  Google Scholar 

  36. Dong X, Chen Z, Liu YJ et al (2021) GPU-based supervoxel generation with a novel anisotropic metric. IEEE Trans Image Process 30:8847–8860

    Article  Google Scholar 

  37. Liu Y, Wang W, Lévy B et al (2009) On centroidal Voronoi tessellation-energy smoothness and fast computation. ACM Trans Graph (TOG) 28(4):1–17

    Article  Google Scholar 

  38. Lu L, Sun F, Pan H et al (2012) Global optimization of centroidal Voronoi tessellation with Monte Carlo approach. IEEE Trans Vis Comput Graph 18(11):1880–1890

    Article  Google Scholar 

  39. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    Article  MathSciNet  Google Scholar 

  40. Liu YJ, Xu CX, Yi R et al (2016) Manifold differential evolution (MDE) a global optimization method for geodesic centroidal Voronoi tessellations on meshes. ACM Trans Graph (TOG) 35(6):1–10

    Article  Google Scholar 

  41. Ye Z, Yi R, Yu M et al (2019) Geodesic centroidal Voronoi tessellations: theories, algorithms and applications. arXiv preprint arXiv:1907.00523

  42. Wang X, Ying X, Liu YJ et al (2015) Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes. Comput Aided Des 58:51–61

    Article  Google Scholar 

  43. Yan DM, Lévy B, Liu Y et al (2009) Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Comput Graph Forum 28(5):1445–1454

  44. Hou W, Zong C, Wang P et al (2022) SDF-RVD: restricted Voronoi diagram on signed distance field. Comput Aided Des 144:103166

    Article  MathSciNet  Google Scholar 

  45. Telsang B, Djouadi SM (2022) Computation of centroidal Voronoi tessellations in high dimensional spaces. IEEE Contr Syst Lett 6:3313–3318

    Article  MathSciNet  Google Scholar 

  46. Du Q, Wang D (2005) Anisotropic centroidal Voronoi tessellations and their applications. SIAM J Sci Comput 26(3):737–761

    Article  MathSciNet  Google Scholar 

  47. Lévy B, Liu Y (2010) \(L^{p}\) centroidal Voronoi tessellation and its applications. ACM Trans Graph (TOG) 29(4):1–11

    Article  Google Scholar 

  48. Ekelschot D, Ceze M, Garai A et al (2018) Robust metric aligned quad-dominant meshing using \(L^{p}\) centroidal Voronoi tessellation. In: 2018 AIAA Aerospace Sciences Meeting, p 1501

  49. Ekelschot D, Ceze M, Murman SM et al (2019) Parallel high-order anisotropic meshing using discrete metric tensors. In: AIAA Scitech 2019 forum, p 1993

  50. Xiao Y, Chen Z, Cao J et al (2018) Optimal power diagrams via function approximation. Comput Aided Des 102:52–60

    Article  Google Scholar 

  51. Mamatha TM, Venkatesh B (2019) Numerical integration over arbitrary tetrahedral element by transforming into standard 1-cube. IOP Conf Ser Mater Sci Eng 577(1):012172

    Article  Google Scholar 

  52. Zhang WX, Wang Q, Guo JP et al (2022) Constrained remeshing using evolutionary vertex optimization. Comput Graph Forum 41(2):237–247

  53. Persson PO, Strang G (2004) A simple mesh generator in matlab. SIAM Rev 46(2):329–345

    Article  MathSciNet  Google Scholar 

  54. Hang S (2015) Tetgen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans Math Softw 41(2):11

    MathSciNet  Google Scholar 

  55. Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MathSciNet  Google Scholar 

  56. Hu Y, Schneider T, Wang B et al (2020) Fast tetrahedral meshing in the wild. ACM Trans Graph (TOG) 39(4):117–1

    Article  Google Scholar 

  57. Yang Y, Zhang WX, Liu Y et al (2020) Error-bounded compatible remeshing. ACM Trans Graph (TOG) 39(4):113–1

    Article  Google Scholar 

  58. Frey PJ, Borouchaki H (1999) Surface mesh quality evaluation. Int J Numer Methods Eng 45(1):101–118

    Article  MathSciNet  Google Scholar 

  59. Tecchio C, Basso E, de Azevedo JLF et al (2014) Mesh improvement for multiblock grids in store separation problems. In: CONEM 2014

  60. Jamin C, Alliez P, Yvinec M et al (2015) CGALmesh: a generic framework for Delaunay mesh generation. ACM Trans Math Softw 41(4):1–24

    Article  MathSciNet  Google Scholar 

  61. Liu Y (2010) HLBFGS. https://xueyuhanlang.github.io/software/HLBFGS/

  62. Gaël Guennebaud BJ et al (2018) Eigen. https://eigen.tuxfamily.org/

  63. Sharp N et al (2019) Polyscope. www.polyscope.run

  64. Chen Z, Yuan Z, Choi YK et al (2012) Variational blue noise sampling. IEEE Trans Vis Comput Graph 18(10):1784–1796

    Article  Google Scholar 

  65. Simulation P (2023) featool-multiphysics. https://github.com/precise-simulation/featool-multiphysics/releases/tag/1.16.3, gitHub

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFB3303400), National Natural Science Foundation of China (Nos. 61972327, 62272402, and 62372389), Natural Science Foundation of Fujian Province (No. 2022J01001), and Fundamental Research Funds for the Central Universities (No. 20720220037).

Author information

Authors and Affiliations

Authors

Contributions

YW: Methodology, Investigation, Software, Visualization, Writing-Original draft preparation, Writing-Reviewing and Editing. JC, ZC: Methodology, Validation, Supervision, Formal analysis, Writing-Reviewing and Editing.

Corresponding author

Correspondence to Zhonggui Chen.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Y., Cao, J. & Chen, Z. Global optimization of optimal Delaunay triangulation with modified whale optimization algorithm. Engineering with Computers (2024). https://doi.org/10.1007/s00366-023-01928-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-023-01928-2

Keywords

Navigation