Skip to main content
Log in

Porphyry–Copper Mineralization of Talnikovoye Ore Field (Okhotsk Segment of the Okhotsk–Chukotka Volcanogenic Belt)

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The Talnikovoye ore field, where previous academic research and exploration works revealed porphyry copper mineralization, is described. Our data show that the mineralization is confined to the Turonian granodiorite and quartz diorite intrusions (91 Ma, U–Pb metohod) and accompanying hydrothermal–explosive breccias. Biotite–epidote–chlorite propylites are widespread within the ore field; in the southern part, quartz–sericite phyllic alteration is superimposed on the K-feldspar alteration halo. The ore occurs in zones of intense quartz, chlorite–epidote–quartz (with chalcopyrite and molybdenite), sulfide-potassium feldspar–quartz (with chalcopyrite and bornite), and sulfide–quartz–sericite (with chalcopyrite) stockwork veining with copper–molybdenum mineralization. They have moderate concentrations of Cu (0.1–0.3%, reaching 1.1%) and Mo (up to 0.1%), low concentrations of Au (up to 0.1 g/t) and Ag (up to 2.6 g/t), and have a Cu–Mo–(Au, Ag, Pb, Zn, Sb, and As) geochemical signature. Fluid inclusion data suggest the formation of quartz in mineralized veinlet during the magmatic–hydrothermal transition (430–150°С) with solutions at high (50 wt % NaCl equiv.), medium and low concentrations (5–18.9 wt % NaCl equiv.) involved under the cooling–dilution scenario. The values of the main geochemical indicators, such as Cu/Mo (30–60) and Cu/Au (>1 × 105) ratios allowed us to assign the Talnikovoye ore field to the porphyry copper–molybdenum type characteristic of continental-margin volcano-plutonic belts formed on the mafic island-arc basement. The geochemical parameters of ore-bearing porphyry granitoids indicate their formation in a setting of a subduction-to-transform plate boundary transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. I. I. Abramovich, S. D. Voznesenskii, and N. G. Mannafov, “Geodynamic evolution and metallogeny of the Okhotsk–Kolyma segment of the Okhotsk–Chukotka volcanogenic belt,” Tikhookean. Geol. 20 (2), 3–12 (2001).

  2. V. V. Akinin and E. L. Miller, “Evolution of calc-alkaline magmas of the Okhotsk–Chukotka volcanic belt,” Petrology 19 (3), 237–277 (2011).

  3. V. V. Akinin, N. V. Berdnikov, G. O. Polzunenkov, A. N. Glukhov, and E. E. Kolova, “Geochemical criteria of calc-alkaline intrusive magmas promising for the discovery of copper porphyry deposits at the Russian Northeast,” Vestn. SVKNII DVO RAN, No. 1, 3–10 (2020).

    Google Scholar 

  4. A. A. Alenicheva, V. V.Akinin, E. E. Kolova, P. I. Veselovskii, N. S. Kasatkin, O. A. Belikova, and G. O. Polzunenkov, “New data on U-Pb age, petrochemical features, and metallogenic specialization of magmatic rocks in the junction zone of the Koni-Taigonos island-arc system and Okhotsk–Chukotka volcanoplutonic belt,” Petrology and Ore Potential of Magmatic Formations (IGM SO RAN, Novosibirsk, 2022), pp. 12–14 [in Russian].

    Google Scholar 

  5. N. V. Andreeva, A. P. Ponomareva, N. N. Kruk et al., Magadan Batholith: Structure, Compositions and Conditions of Formation (SVKNII DVO RAN, Magadan, 1999) [in Russian].

    Google Scholar 

  6. V. F. Belyi, “Problems of geological and isotopic age of the Okhotsk–Chukotsk Volcanogenic Belt (OCVB),” Stratigraphy. Geol. Correlation 16 (6), 639–649 (2008).

  7. A. S. Borisenko, “Cryometric study of salt composition of gas–liquid inclusions in minerals,” Geol. Geofiz., No. 8, 16–27 (1977).

  8. D. S. Bukhanova and P. Yu. Plechov, “Conditions of formation of the Malmyzh Au–Cu-porphyry deposit, Khabarovsk krai: evidence from fluid inclusion study,” Vestn. KRAUNTs. Ser. Nauki o Zemle, No. 2, 61–71 (2017).

  9. D. S. Bukhanova, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IVS DVO RAN, Petropavlovsk-Kamchatskii, 2020) [in Russian].

  10. A. I. Grabezhev, “Rhenium-bearing copper porphyry systems of the Urals: geological position, isotope-petrogeochemical and age lateral zoning,” Litosfera, No. 4, 190–207 (2012).

    Google Scholar 

  11. Geodynamics, Magmatism, and Metallogeny of East Russi Ed. by A. I. Khanchuk (Dal’nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  12. N. A. Goryachev, Uda–Murgal magmatic arc: geology, magmatism, and metallogeny,” Metallogenic Problems of Ore Districts of the Northeast Russia (SVKNII DVO RAN, Magadan, 2005), pp. 17–38 [in Russian].

    Google Scholar 

  13. O. V. Grinenko, A. I. Sergeenko, and I. N. Belolyubskii, “Stratigraphy of Paleogene and Neogene deposits of Northeast Russia,” Otechestvennaya Geol., No. 8, 14–20 (1997).

  14. N. P. Ermakov and Yu. A. Dolgov, Termobarogeochemistry (Nedra, Moscow, 1979) [in Russian].

    Google Scholar 

  15. V. S. Zvezdov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (TsNIGRI, Moscow, 2022) [in Russian].

  16. E. E. Kolova, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IGEM RAN, Moscow, 2009) [in Russian].

  17. E. E. Kolova and N. E. Savva, “Relations of copper porphyry and gold mineralization on the Koni and P’yagina Islands (Noryh Okhotsk region),” Vestn. SVNTs DVO RAN, No. 4, 2–15 (2008).

    Google Scholar 

  18. E. E. Kolova, “Geological and physicochemical factors of the formation of Cu and Mo porphyry ores of the northwestern Pacific belt,” 18th All-Russian Conference on Thermobarogeochemistry, Moscow, Russia, 2018 (Izd-vo Pervogo MGMU im. I.M. Sechenova, Moscow, 2018), pp. 57–58.

  19. E. E. Kolova and A. N. Glukhov, “Potential of revealing the copper porphyry ores at the territory of the Magadan district,” Science of Northeast Russia: Fundamental and Applied Studies in Northern Pacific and Arctica. Proc. Forum, Magadan, Russia, 2020 (SVKNII DVO RAN, Magadan, 2020), pp. 92–96 [in Russian].

  20. E. E. Kolova and A. N. Glukhov, “Potential of revealing the copper porphyry ores at the territory of the Magadan district,” Science of Northeast Russia: Fundamental and Applied Studies in Northern Pacific and Arctica, Magadan, Russia, 2020 (SVKNII DVO RAN, Magadan, 2020), pp. 92-95 [in Russian].

    Google Scholar 

  21. E. E. Kolova, A. N. Glukhov, V. V. Akinin, G. O. Polzunenkov, A. A. Alenicheva, V. V. Priimenko, N. S. Kasatkin, and V. I. Shpikerman, “Age boundaries of the formation of copper porphyry mineralization of the Okhotsk–Chaun metallogenic province,” Scientific–Methodical Principles of Prediction, Prospecting, and Assessment of Diamond, Noble and Non-Ferrous Metals: Proc. 11 th International Scientific-Practical Conference, TSNIGRI, Moscow, 2022 (TsNIGRI, Moscow, 2022), pp. 101-104.

  22. A. I. Krivtsov, V. S. Zvezdov, O. V. Minina, and I. F. Migachev, “Copper porphyry deposits,” Models of Deposits of Non-Ferrous and Noble Metals (TsNIGRI, Moscow, 2001) [in Russian].

  23. F. P. Mel’nikov, V. Yu. Prokof’ev, and N. N. Shatagin, Thermobarogeochemistry (Akad. Proekt, Moscow, 2008) [on Russian].

    Google Scholar 

  24. A. I. Soldatov, “Mesozoic volcanoplutonic belts and systems in the continental part of East Asia,” Tikhookean. Geol. 22 (3), 28–49 (2003).

  25. E. V. Nagornaya, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (MGU, Moscow, 2013) [in Russian].

  26. Yu. N. Nikolaev, I. A. Baksheev, V. Yu. Prokof’ev, E. V. Nagornaya, L. I. Marushchenko, Yu. N. Sidorina, and I. A. Kal’ko, “Gold–silver mineralization in porphyry–epithermal systems of the Baimka trend, western Chukchi Peninsula, Russia,” Geol. Ore Deposits 58 (4), 284–307 (2016).

  27. O. V. Petrov, E. A. Kiselev, V. I. Shpikerman, and Yu. P. Zmievskii, “Prediction of distribution of gold copper porphyry type in the volcanoplutonic belts of eastern regions of Russia: Evidence from compilation of sheets if Gosgeolkarta-1000/3,” Regional. Geol. Metallogen., No. 80, pp. 50–74 (2019).

  28. Petrographic Code of Russia. Magmatic, Metamorphic, Metasomatic, and Impact Rocks (VSEGEI, St. Petersburg, 2009) [in Russian].

  29. E. Roedder, Fluid Inclusions, Rev. Mineral. 12, (1984).

    Book  Google Scholar 

  30. T. B. Rusakova, “Late Jurassic–Neocomian volcanism of the Northern Okhotsk region: geology, tectonic settings, and mineralization,” J. Pac. Geol. 5 (5), 418–432 (2011).

  31. N. E. Savva, “Copper porphyry metallogenic belts of northwestern marginal-marine province of the Pacific Ocean,” Metallogenic Problems of Ore Districts of Northeast Russia (SVKNII DVO RAN, Magadan, 2005), pp. 38–59 [in Russian].

    Google Scholar 

  32. S. D. Sokolov, “Tectonics of Northeast Asia: an overview,” Geotectonics, 44 (6), 493–509 (2010).

  33. S. G. Soloviev, Metallogeny of Shoshonite Magmatism (Nauch. mir, Moscow, 2014), Vol. 1 [in Russian].

  34. P. L. Tikhomirov, Cretaceous Marginal-Continental Magmatism of Nortehast Asia and Genetic Problems of the Largest Phanerozoic Provinces of Silicic Volcanism (GEOS, Moscow, 2020) [in Russian].

    Google Scholar 

  35. R. B. Umitbaev, Okhotsk–Chaun Metallogenic Province: Structure, Ore Potential and Analogues (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  36. T. I. Frolova and I. A. Burikova, Magmatic Formations of the Modern Geotectonic Settings (MSU, Moscow, 1997) [in Russian].

    Google Scholar 

  37. V. B. Khubanov, M. D. Buyantuev, and A. A. Tsygankov, “U–Pb dating of zircons from PZ3–MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: technique and comparison with SHRIMP,” Russ. Geol. Geophys. 57 (1), 190–205 (2016).

  38. J. L. Anderson and D. R. Smith, “The effects of temperature and fO2 on the Al-in-hornblende barometer,” Am. Mineral. 80 (5-6), 549–559 (1995).

  39. R. A. Batchelor and P. Bowden, “Petrogenetic interpretation of granitoid rock series using multicationic parameters,” Chem. Geol. 48, 43–55 (1985).

  40. P. Bayliss, “Nomenclature of the trioctahedral chlorites,” Can. Mineral. 13, 178–180 (1975).

  41. R. J. Bodnar and M. O. Vityk, “Interpretation of microterhrmometric data for H2O–NaCl fluid inclusions,” Fluid Inclusions in Minerals: Methods and Application, Ed. by B. De Vivo and M. L. Frezzotti (Pontignano-Siena, 1994), pp. 117–130.

    Google Scholar 

  42. P. E. Brown, “FLINCOR: a Microcomputer Program for the Reduction and Investigation of Fluid-Inclusion Data,” Am. Mineral. 74 (11–12), 1390–1393 (1989).

  43. E. Campos, J. L. R. Touret, I. Nikogosian, et al., “Overheated, Cu-bearing magmas in the Zaldivar porphyry Cu deposit, Northern Chile. Geodynamic consequences,” Tectonophysics 345 (1), 229–251 (2002).

  44. K. Cao, Z. M. Yang, J. F. Xu, B. Fu, W. K. Li, M. Y. Sun, “Origin of dioritic magma and its contribution to porphyry Cu–Au mineralization at Pulang in the Yidun Arc, Eastern Tibet,” Lithos 304, 436–449 (2018).

  45. M. Cathelineau, “Cation site occupancy in chlorites and illites as a function of temperature,” Clay Mineral. 23, 421–485 (1988).

  46. F. Corfu, J. Hanchar, P. W. O. Hoskin, and P. Kinny, “Atlas of zircon textures,” Rev. Mineral. Geochem. 53, 469–500 (2003).

    Google Scholar 

  47. B. R. Frost, R. J. Arculus, C. G. Barnes, et al., “A geochemical classification of granitic rocks,” J. Petrol. 42 (11), 2033–2048 (2001).

  48. A. Grebennikov and A. Khanchuk, “Pacific-type transform and convergent margins: igneous rocks, geochemical contrasts and discriminant diagrams,” Int. Geol. Rev 63, 601–629 (2021).

  49. D. L. Hall, S. M. Sterner, and R. J. Bodnar, “Freezing point depression of NaCl–KCl—H2O solutions,” Econ. Geol 83 (1), 197–202 (1988).

  50. J. M. Hammarstrom, M. L. Zientek, and H. L. Parks, “Global copper mineral resource assessment team, 2019. Assessment of undiscovered copper resources of the world, 2015 (ver. 1.1, May 24, 2019),” U.S. Geol. Surv. Sci. Investigations Report 2018–5160, (2019).

  51. M. H. Hey, “A new review of the chlorites,” Mineral. Mag. 30, 277–292 (1954).

  52. V. F. Hollister and E. B. Sirvas, “The Michiquillay porphyry copper deposit,” Mineral. Deposita 9, 261–269 (1974).

  53. P. W. O. Hoskin and U. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” Rev. Mineral. Geochem. 53, 27–62 (2003).

    Google Scholar 

  54. E. C. Jowett, “Fitting iron and magnesium into the hydrothermal chlorite geothermometer”, SSRN, No. 3863523, (2021).

  55. E. L. Klein, C. Harris, A. Giret, and C. A. Moura, “The Cipoeiro gold deposit, Gurupi Belt, Brazil: geology, chlorite geochemistry, and stable isotope study,” Tectonophysics 23 (2–3), 242–255 (2007).

  56. M. R. Landtwing, T. Pettke, W. E. Halter, et al., “Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: the Bingham porphyry,” Earth Planet. Sci. Lett. 235 (1), 229–243 (2005).

  57. R. R. Loucks, “Distinctive composition of copper-ore-forming arc magmas,” Aust. J. Earth Sci. 61 (1), 5–16 (2014).

  58. J. D. Lowell and J. M. Guilbert, “Lateral and vertical alteration mineralization zoning in porphyry ore deposits,” Econ. Geol. 65 (4), 373–408 (1970).

  59. G. M. Mudd and S. M. Jowitt, “Growing global copper resources, reserves and production: discovery is not the only control on supply,” Econ. Geol. 113 (6), 1235–1267 (2018).

  60. A. Peccerillo and S. R. Taylor, “Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey,” Contrib. Mineral. Petrol. 58, 63–81 (1976).

  61. F. Ridolfi, A. Renzulli, and M. Puerini, “Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes,” Contrib. Mineral. Petrol. 160, 45–66 (2009).

  62. F. Ridolfi and A. Renzulli, “Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130°C and 2.2 GPa,” Contrib. Mineral. Petrol. 163, 877–895 (2012).

  63. A. M. H. Shabani, S. Dadfarnia, F. Motavaselian, and S. H. Ahmadi, “Separation and preconcentration of cadmium ions using octadecyl silica membrane disks modified by methyltrioctylammonium chloride,” J. Hazard. Mater. 162 (1), 373–377 (2009).

  64. T. A. A. Shabani, “Mineral chemistry of chlorite replacing biotite from granitic rocks of the Canadian Appalachians,” J. Sci. Iran 203, 265–275 (2009).

  65. R. H. Sillitoe, “Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery,” Gold in 2000, Rev. Econ. Geol. 13, 315–345 (2000).

  66. R. H. Sillitoe, “Porphyry Copper Systems,” Econ. Geol. 105 (1), 3–41 (2010).

  67. J. Slama, J. Kosler, D. J. Condon, J. L. Crowley, A. Gerdes, J. M. Hanchar, and M. J. Whitehouse, “Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis,” Chem. Geol. 249 (1–2), 1–35 (2008).

  68. S. G. Soloviev, S. G. Kryazhev, S. S. Dvurechenskaya, V. E. Vasyukov, D. A. Shumilin, and D. A. Voskresensky, “The superlarge Malmyzh porphyry Cu-Au deposit, Sikhote-Alin, Eastern Russia: igneous geochemistry, hydrothermal alteration, mineralization, and fluid inclusion characteristics,” Ore Geol. Rev 113, 103–112 (2019).

  69. S. M. Sterner, D. L. Hall, and R. J. Bodnar, “Synthetic fluid inclusions. V. Solubility relations in the system NaCl–KCl—H2O under vapor-saturated conditions,” Geochim. Cosmochim. Acta 52 (5), 989–1005 (1988).

  70. M. A. P. C. Wiedenbeck, P. Alle, F. Y. Corfu, W. L. Griffin, M. Meier, F. V. Oberli, and W. Spiegel, “Three natural zircon standards for U–Th–Pb, Lu-Hf, trace element and REE analyses,” Geostand. Newslett. 19 (1), 1–23 (1995).

  71. J. J. Wilkinson, “Fluid inclusions in hydrothermal ore deposits,” Lithos 55 (1-4), 229–272 (2001).

  72. A. Zane and Z. Weiss, “A procedure for classifying rock-forming chlorites based on microprobe data,” Rend. Fis. Acc. Lincei 9, 51–56 (1998).

Download references

Funding

This work was supported by the complex program of basic research of Far Eastern Branch, Russian Academy of Sciences (head A.I. Khanchuk), Foundation of the Governor of the Magadan oblast for Young Scientists in 2023 (head G.O. Polzunkov) and the North, the Territory of Stable Development Scientific-Research Center

Isotope-geochronological studies were supported by the Russian Science Foundation (project no. 20-17-00169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Kolova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Recommended for publishing by N.A. Goryachev

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolova, E.E., Glukhov, A.N., Polzunenkov, G.O. et al. Porphyry–Copper Mineralization of Talnikovoye Ore Field (Okhotsk Segment of the Okhotsk–Chukotka Volcanogenic Belt). Russ. J. of Pac. Geol. 17, 549–569 (2023). https://doi.org/10.1134/S1819714023060064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714023060064

Keywords:

Navigation