Skip to main content

Advertisement

Log in

The landscape of very important pharmacogenes variants and potential clinical relevance in the Chinese Jingpo population: a comparative study with worldwide populations

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Pharmacogenomics is a facet of personalized medicine that explores how genetic variants affect drug metabolism and adverse drug reactions. Therefore, this study aims to detect distinct pharmacogenomic variations among the Jingpo population and explore their clinical correlation with drug metabolism and toxicity.

Methods

Agena MassARRAY Assay was used to genotype 57 VIP variants in 28 genes from 159 unrelated Jingpo participants. Subsequently, the chi-squared test and Bonferroni’s statistical tests were utilized to conduct a comparative analysis of genotypes and allele frequencies between the Jingpo population and the other 26 populations from the 1000 Genome Project.

Results

We discovered that the KHV (Kinh in Ho ChiMinh City, Vietnam), CHS (Southern Han Chi­nese, China) and JPT (Japanese in Tokyo, Japan) exhibited the smallest differences from the Jingpo with only 4 variants, while ESN (Esan in Nigeria) exhibited the largest differences with 30 variants. Besides, a total of six considerably different loci (rs4291 in ACE, rs20417 in PTGS2, rs1801280 and rs1799929 in NAT2, rs2115819 in ALOX5, rs1065852 in CYP2D6, p < 3.37 × 10–5) were identified in this study. According to PharmGKB, rs20417 (PTGS2), rs4291 (ACE), rs2115819 (ALOX5) and rs1065852 (CYP2D6) were found to be associated with the metabolism efficiency of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin, montelukast and tamoxifen, respectively. Meanwhile, rs1801280 and rs1799929 (NAT2) were found to be related to drug poisoning with slow acetylation.

Conclusion

Our study unveils distinct pharmacogenomic variants in the Jingpo population and discovers their association with the metabolic efficiency of NSAIDs, montelukast, and tamoxifen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Montané E, Santesmases J (2020) Adverse drug reactions. Med Clin (Barc) 154(5):178–184. https://doi.org/10.1016/j.medcli.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  2. Langmia IM, Just KS, Yamoune S et al (2021) CYP2B6 functional variability in drug metabolism and exposure across populations-implication for drug safety, dosing, and individualized therapy. Front Genet 12:692234. https://doi.org/10.3389/fgene.2021.692234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pirmohamed M (2023) Pharmacogenomics: current status and future perspectives. Nat Rev Genet 24(6):350–362. https://doi.org/10.1038/s41576-022-00572-8

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, De T, Zhong Y et al (2019) The advantages and challenges of diversity in pharmacogenomics: can minority populations bring us closer to implementation? Clin Pharmacol Ther 106(2):338–349. https://doi.org/10.1002/cpt.1491

    Article  PubMed  Google Scholar 

  5. Danese E, Raimondi S, Montagnana M et al (2019) Effect of CYP4F2, VKORC1, and CYP2C9 in influencing coumarin dose: a single-patient data meta-analysis in more than 15,000 individuals. Clin Pharmacol Ther 105(6):1477–1491. https://doi.org/10.1002/cpt.1323

    Article  CAS  PubMed  Google Scholar 

  6. Johnson JA, Caudle KE, Gong L et al (2017) Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther 102(3):397–404. https://doi.org/10.1002/cpt.668

    Article  CAS  PubMed  Google Scholar 

  7. Sitabule BR, Othman H, Choudhury A et al (2023) Promoting pharmacogenomics in Africa: perspectives from variation in G6PD and other pharmacogenes. Clin Pharmacol Ther 113(3):476–479. https://doi.org/10.1002/cpt.2816

    Article  PubMed  Google Scholar 

  8. Haas DW, Abdelwahab MT, van Beek SW et al (2022) Pharmacogenetics of between-individual variability in plasma clearance of bedaquiline and clofazimine in South Africa. J Infect Dis 226(1):147–156. https://doi.org/10.1093/infdis/jiac024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li D, Peng L, Xing S et al (2021) Genetic analysis of pharmacogenomic VIP variants in the Wa population from Yunnan Province of China. BMC Genom Data. 22(1):51. https://doi.org/10.1186/s12863-021-00999-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng Y, Dai R, Chen W et al (2020) Genetic polymorphisms of pharmacogenomic VIP variants in the Dai population from Yunnan province. Mol Genet Genomic Med 8(7):e1231. https://doi.org/10.1002/mgg3.1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang C, Guo W, Cheng Y et al (2019) Genetic analysis of pharmacogenomic VIP variants in the Blang population from Yunnan Province of China. Mol Genet Genomic Med 7(5):e574. https://doi.org/10.1002/mgg3.574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen W, Ding H, Cheng Y et al (2019) Genetic polymorphisms analysis of pharmacogenomic VIP variants in Bai ethnic group from China. Mol Genet Genomic Med 7(9):e884. https://doi.org/10.1002/mgg3.884

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dong W, Wang D, Li Y et al (2020) Genetic polymorphism of HPA1–17 alloantigen system in the Achang and Jingpo populations population in Yunnan. Ann Palliat Med. 9(4):1990–1996. https://doi.org/10.21037/apm-20-1075

    Article  PubMed  Google Scholar 

  14. Kang H (2021) Sample size determination and power analysis using the G*Power software. J Educ Eval Health Prof. 18:17. https://doi.org/10.3352/jeehp.2021.18.17

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chamboko CR, Veldman W, Tata RB et al (2023) Human Cytochrome P450 1, 2, 3 families as pharmacogenes with emphases on their antimalarial and antituberculosis drugs and prevalent African alleles. Int J Mol Sci. https://doi.org/10.3390/ijms24043383

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao J, Lin L, Hadiatullah H et al (2023) Characterization of six diamide insecticides on ryanodine receptor: resistance and species selectivity. J Agric Food Chem 71(29):11001–11007. https://doi.org/10.1021/acs.jafc.3c01750

    Article  CAS  PubMed  Google Scholar 

  17. Martínez-Iglesias O, Naidoo V, Carrera I et al (2023) Influence of metabolic, transporter, and pathogenic genes on pharmacogenetics and DNA methylation in neurological disorders. Biology (Basel). https://doi.org/10.3390/biology12091156

    Article  PubMed  Google Scholar 

  18. Principi N, Petropulacos K, Esposito S (2023) Impact of pharmacogenomics in clinical practice. Pharmaceuticals (Basel). https://doi.org/10.3390/ph16111596

    Article  PubMed  Google Scholar 

  19. Arbitrio M, Scionti F, Di Martino MT et al (2021) Pharmacogenomics biomarker discovery and validation for translation in clinical practice. Clin Transl Sci 14(1):113–119. https://doi.org/10.1111/cts.12869

    Article  PubMed  Google Scholar 

  20. Kim TH, Chang HS, Park SM et al (2008) Association of angiotensin I-converting enzyme gene polymorphisms with aspirin intolerance in asthmatics. Clin Exp Allergy 38(11):1727–1737. https://doi.org/10.1111/j.1365-2222.2008.03082.x

    Article  CAS  PubMed  Google Scholar 

  21. Irvin MR, Lynch AI, Kabagambe EK et al (2010) Pharmacogenetic association of hypertension candidate genes with fasting glucose in the GenHAT Study. J Hypertens 28(10):2076–2083. https://doi.org/10.1097/HJH.0b013e32833c7a4d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferreira de Oliveira F, Berretta JM, Suchi Chen E et al (2016) Pharmacogenetic effects of angiotensin-converting enzyme inhibitors over age-related urea and creatinine variations in patients with dementia due to Alzheimer disease. Colomb Med (CA). 47(2):76–80

    Article  PubMed Central  Google Scholar 

  23. Vogel LK, Sæbø M, Høyer H et al (2014) Intestinal PTGS2 mRNA levels, PTGS2 gene polymorphisms, and colorectal carcinogenesis. PLoS ONE 9(8):e105254. https://doi.org/10.1371/journal.pone.0105254

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang J, Chen X, Zhou J et al (2018) Associations of candidate gene polymorphisms with poor responsiveness to aspirin: a meta-analysis. Clin Exp Pharmacol Physiol. https://doi.org/10.1111/1440-1681.12973

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharma V, Kaul S, Al-Hazzani A et al (2013) Association of COX-2 rs20417 with aspirin resistance. J Thromb Thrombolysis 35(1):95–99. https://doi.org/10.1007/s11239-012-0777-8

    Article  CAS  PubMed  Google Scholar 

  26. Nagao M, Sato Y, Yamauchi A (2013) A meta-analysis of PTGS1 and PTGS2 polymorphisms and NSAID intake on the risk of developing cancer. PLoS ONE 8(8):e71126. https://doi.org/10.1371/journal.pone.0071126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tiis RP, Osipova LP, Lichman DV et al (2020) Studying polymorphic variants of the NAT2 gene (NAT2*5 and NAT2*7) in Nenets populations of Northern Siberia. BMC Genet 21(Suppl 1):115. https://doi.org/10.1186/s12863-020-00909-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sim E, Walters K, Boukouvala S (2008) Arylamine N-acetyltransferases: from structure to function. Drug Metab Rev 40(3):479–510. https://doi.org/10.1080/03602530802186603

    Article  CAS  PubMed  Google Scholar 

  29. Ruiz JD, Martínez C, Anderson K et al (2012) The differential effect of NAT2 variant alleles permits refinement in phenotype inference and identifies a very slow acetylation genotype. PLoS ONE 7(9):e44629. https://doi.org/10.1371/journal.pone.0044629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adole PS, Kharbanda PS, Sharma S (2016) N-acetyltransferase 2 (NAT2) gene polymorphism as a predisposing factor for phenytoin intoxication in tuberculous meningitis or tuberculoma patients having seizures—a pilot study. Indian J Med Res 143(5):581–590. https://doi.org/10.4103/0971-5916.187106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta VH, Amarapurkar DN, Singh M et al (2013) Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. J Gastroenterol Hepatol 28(8):1368–1374. https://doi.org/10.1111/jgh.12194

    Article  CAS  PubMed  Google Scholar 

  32. Xiang Y, Ma L, Wu W et al (2014) The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1. PLoS ONE 9(1):e85905. https://doi.org/10.1371/journal.pone.0085905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lawi ZK, Al-Shuhaib MBS, Amara IB (2023) The rs1801280 SNP is associated with non-small cell lung carcinoma by exhibiting a highly deleterious effect on N-acetyltransferase 2. J Cancer Res Clin Oncol 149(1):147–157. https://doi.org/10.1007/s00432-022-04332-3

    Article  CAS  PubMed  Google Scholar 

  34. Lima JJ, Zhang S, Grant A et al (2006) Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am J Respir Crit Care Med 173(4):379–385. https://doi.org/10.1164/rccm.200509-1412OC

    Article  CAS  PubMed  Google Scholar 

  35. Tantisira KG, Lima J, Sylvia J et al (2009) 5-lipoxygenase pharmacogenetics in asthma: overlap with Cys-leukotriene receptor antagonist loci. Pharmacogenet Genomics 19(3):244–247. https://doi.org/10.1097/FPC.0b013e328326e0b1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kotani H, Kishi R, Mouri A et al (2012) Influence of leukotriene pathway polymorphisms on clinical responses to montelukast in Japanese patients with asthma. J Clin Pharm Ther 37(1):112–116. https://doi.org/10.1111/j.1365-2710.2011.01248.x

    Article  CAS  PubMed  Google Scholar 

  37. Taylor C, Crosby I, Yip V et al (2020) A review of the important role of CYP2D6 in pharmacogenomics. Genes (Basel). https://doi.org/10.3390/genes11111295

    Article  PubMed  PubMed Central  Google Scholar 

  38. Haufroid V, Hantson P (2015) CYP2D6 genetic polymorphisms and their relevance for poisoning due to amfetamines, opioid analgesics and antidepressants. Clin Toxicol (Phila) 53(6):501–510. https://doi.org/10.3109/15563650.2015.1049355

    Article  CAS  PubMed  Google Scholar 

  39. Ji Y, Schaid DJ, Desta Z et al (2014) Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations. Br J Clin Pharmacol 78(2):373–383. https://doi.org/10.1111/bcp.12348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun CJ, Li L, Li XY et al (2018) Associations of polymorphisms of CYP2D6 and CYP2C9 with early onset severe pre-eclampsia and response to labetalol therapy. Arch Gynecol Obstet 298(1):125–132. https://doi.org/10.1007/s00404-018-4791-8

    Article  PubMed  Google Scholar 

  41. Peng C, Ding Y, Yi X et al (2018) Polymorphisms in CYP450 genes and the therapeutic effect of atorvastatin on ischemic stroke: a retrospective cohort study in chinese population. Clin Ther 40(3):469-477.e462. https://doi.org/10.1016/j.clinthera.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  42. Sirachainan E, Jaruhathai S, Trachu N et al (2012) CYP2D6 polymorphisms influence the efficacy of adjuvant tamoxifen in Thai breast cancer patients. Pharmgenom Pers Med 5:149–153. https://doi.org/10.2147/pgpm.S32160

    Article  CAS  Google Scholar 

  43. Lu J, Li H, Guo P et al (2017) The effect of CYP2D6 *10 polymorphism on adjuvant tamoxifen in Asian breast cancer patients: a meta-analysis. Onco Targets Ther 10:5429–5437. https://doi.org/10.2147/ott.S149197

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to all participants in this research.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by XM. YL, XZ and JG collected data and organized tables. XM and WZ were involved in the statistical analysis of the study. JH, JL and PW revised the manuscript. TJ and HY was responsible for managing and supervising the whole progress.

Corresponding authors

Correspondence to Hua Yang or Tianbo Jin.

Ethics declarations

Conflict of interest

The author declares there are no conflicts of interest.

Ethical approval

The study was conducted in accordance with the study protocol approved by Northwest University.

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, Y., Zang, X. et al. The landscape of very important pharmacogenes variants and potential clinical relevance in the Chinese Jingpo population: a comparative study with worldwide populations. Cancer Chemother Pharmacol 93, 481–496 (2024). https://doi.org/10.1007/s00280-023-04638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-023-04638-0

Keywords

Navigation