Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-05T16:12:02.628Z Has data issue: false hasContentIssue false

Improving pilots’ tactical decisions in air combat training using the critical decision method

Published online by Cambridge University Press:  01 February 2024

H. Mansikka*
Affiliation:
Department of Military Technology, National Defence University, Finland Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland
K. Virtanen
Affiliation:
Department of Military Technology, National Defence University, Finland Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland
T. Lipponen
Affiliation:
Finnish Air Force, Finland
D. Harris
Affiliation:
Faculty of Engineering, Environment and Computing, Coventry University, UK
*
Corresponding author: H. Mansikka; Email: heikki.mansikka@aalto.fi

Abstract

In fighter pilot training, much of upgrade pilots’ (UPs’) learning takes place during mission debriefs. A debrief provides instructor pilots (IPs) the opportunity to correct situation awareness (SA) upon which the UPs base their tactical decisions. Unless the debrief is conducted with proper depth and breadth, the IPs’ feedback on UPs’ SA and tactical decision-making may be incomplete or false, resulting in poor, or even negative learning. In this study, a new debrief protocol based on the Critical Decision Method (CDM) is introduced. The protocol specifically addresses the SA of UPs. An evaluation was conducted to examine if a short CDM training programme to IPs would enhance their ability to provide performance feedback to UPs regarding their SA and tactical decision-making. The IPs were qualified flying instructors and the UPs were air force cadets completing their air combat training with BAe Hawk jet trainer aircraft. The impact of the training intervention was evaluated using Kirkpatrick’s four-level model. The first three levels of evaluation (Reactions, Learning and Behaviour) focused on the IPs, whereas the fourth level (Results) focused on the UPs. The training intervention had a positive impact on the Reactions, Learning and debrief Behaviour of the IPs. In air combat training missions, the UPs whose debriefs were based on the CDM protocol, had superior SA and overall performance compared to a control group.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bryant, D.J. Rethinking OODA: Toward a modern cognitive framework of command decision making, Mil. Psychol., 2006, 18, (3), pp 183206. https://doi.org/10.1207/s15327876mp1803_1 CrossRefGoogle Scholar
US Air Force. Air Force Doctrine Document 1, 2003.Google Scholar
Zsambok, C.E. and Klein, G. Naturalistic Decision Making, Lawrence Erlbaum Associates, Mahwah, NJ, 1997. https://doi.org/10.4324/9781315806129 Google Scholar
Orasanu, J. and Connolly, T. The reinvention of decision making, In Klein, A., Orasanu, J., Calderwood, R. and Zsambok, C. (Eds.), Decision Making in Action: Models and Methods, Ablex, Norwood, NJ, 1993, pp. 320.Google Scholar
Simon, H.A. A behavioral model of rational choice, Q J. Econ., 1955, 69, (1), pp 87103. https://doi.org/10.2307/1884852 CrossRefGoogle Scholar
Payne, J.W., Bettman, J.R. and Johnson, E.J. Adaptive strategy selection in decision making, J. Exp. Psychol. Learn. Mem. Cognit., 1988, 14, (3), pp. 534552. https://doi.org/10.1037/0278-7393.14.3.534 CrossRefGoogle Scholar
Klein, G.A., Calderwood, R. and Clinton-Cirocco, A. Rapid decision making on the fire ground: The original study plus a postscript, J. Cogn. Eng. Decis. Mak., 2010, 4, (3), pp 186209. https://doi.org/10.1518/155534310X12844000801203 CrossRefGoogle Scholar
Cohen, M.S., Freeman, J.T. and Thompson, B.B. Critical thinking skills in tactical decision making: A model and a training strategy, In Cannon-Bowers, J. and Salas, E. (eds.), Making Decisions Under Stress: Implications for Individual and Team Training. American Psychological Association, Washington, DC, 1998, pp. 155189. https://doi.org/10.1037/10278-006 CrossRefGoogle Scholar
Zakay, D. and Tsal, Y. The impact of using forced decision-making strategies on post-decisional confidence, J. Behav. Decis. Mak., 1993, 6, (1), pp 5368. https://doi.org/10.1002/bdm.3960060104 CrossRefGoogle Scholar
Endsley, M.R. Toward a theory of situation awareness in dynamic systems, Hum. Factors, 1995, 37, (1), pp 3264. https://doi.org/10.1518/001872095779049543 CrossRefGoogle Scholar
Endsley, M.R. The role of situation awareness in naturalistic decision making, In Zsambok, C and Klein, G. (Eds.) Naturalistic Decision Making, Lawrence Erlbaum Associates, Mahwah, NJ, 1997, pp 269284.Google Scholar
Orasanu, J. and Fischer, U. Finding decisions in natural environments: The view from the cockpit. In Zsambok, C and Klein, G. (Eds.) Naturalistic Decision Making, Lawrence Erlbaum Associates, Mahwah, NJ, 1997, pp 343357.Google Scholar
Mansikka, H., Virtanen, K. and Harris, D. Dissociation between mental workload, performance, and task awareness in pilots of high performance aircraft, IEEE Trans. Hum. Mach. Syst., 2018, 49, (1), pp 19. https://doi.org/10.1109/THMS.2018.2874186 CrossRefGoogle Scholar
Brown, R.V., Kahr, A.S. and Peterson, C. Decision Analysis for the Manager, Holt, Rinehart and Winston, New York, NY, 1974.Google Scholar
Li, W.C. and Harris, D. The evaluation of the decision making processes employed by cadet pilots following a short aeronautical decision-making training program, IJAAS, 2006, 6, (2), pp 315333.Google Scholar
Li, W.C. and Harris, D. The evaluation of the effect of a short aeronautical decision-making training program for military pilots, Int. J. Aviat. Psychol., 2008, 18, (2), pp 135152. https://doi.org/10.1080/10508410801926715 CrossRefGoogle Scholar
Mansikka, H., Virtanen, K., Harris, D. and Jalava, M. Measurement of team performance in air combat–have we been underperforming?, Theor. Issues Ergon. Sci., 2021, 22, (3), pp 338359. https://doi.org/10.1080/1463922X.2020.1779382 CrossRefGoogle Scholar
Crandall, B., Klein, G. and Hoffman, R. Working Minds: A Practitioner’s Guide to Cognitive Task Analysis, MIT Press, Cambridge, MA, 2006.CrossRefGoogle Scholar
Klein, G., Calderwood, R. and MacGregor, D. Critical decision method for eliciting knowledge, IEEE Trans. Syst. Man Cybern., 1989, 19, (3), pp 462472. https://doi.org/10.1109/21.31053 CrossRefGoogle Scholar
Klein, G. Sources of Power: How People Make Decisions, MIT Press, Cambridge, MA, 1998.Google Scholar
Endsley, M.R. The divergence of objective and subjective situation awareness: A meta-analysis. J. Cogn. Eng. Decis. Mak., 2020, 4, (1), pp 3453. https://doi.org/10.1177/1555343419874248 CrossRefGoogle Scholar
Gagné, R.M. Educational technology and the learning process, Educ. Res., 1974, 3, (1), pp 38. https://doi.org/10.3102/0013189X003001004 CrossRefGoogle Scholar
Kirkpatrick, D.L. and Kirkpatrick, J.D. Evaluating training programs: The four levels, Berrett-Koehler Publishers, San Francisco, CA, 2006.Google Scholar
Reio, T.G., Rocco, T.S., Smith, D.H. and Chang, E. A critique of Kirkpatrick’s evaluation model, New Horiz. Adult Educ., 2017, 29, (2), pp 3553. https://doi.org/10.1002/nha3.20178 CrossRefGoogle Scholar
Plant, K. and Stanton, N. What is on your mind? Using the perceptual cycle model and critical decision method to understand the decision-making process in the cockpit, Ergonomics, 2013, 56, (8), pp 12321250. https://doi.org/10.1080/00140139.2013.809480 CrossRefGoogle ScholarPubMed
Mansikka, H., Virtanen, K., Uggeldahl, V. and Harris, D. Team situation awareness accuracy measurement technique for simulated air combat - Curvilinear relationship between awareness and performance, Appl. Ergon., 2021, 96, 103473. https://doi.org/10.1016/j.apergo.2021.103473 CrossRefGoogle ScholarPubMed
Tamkin, P., Yarnall, J. and Kerrin, M. Kirkpatrick and Beyond: A Review of Models of Training Evaluation, Institute for Employment Studies, Brighton, UK, 2002.Google Scholar
Kirlik, A., Arthur, D., Walker, N. and Rothrock, L. Feedback augmentation and part-task practice in training dynamic decision-making, In Cannon-Bowers, J.A. and Salas, E. (Eds.), Making decisions under stress: Implications for individual and team training. American Psychological Association, Washington, DC, 1998, pp. 91113.CrossRefGoogle Scholar
Li, W.C. and Harris, D. A systems approach to training aeronautical decision making: From identifying training needs to verifying training solutions, Aeronaut. J., 2007, 111, (1118), pp 267279. https://doi.org/10.1017/S0001924000004516 CrossRefGoogle Scholar
Crandall, B. and Getchell-Reiter, K. Critical decision method: A technique for eliciting concrete assessment indicators from the intuition of NICU nurses, ANS Adv. Nurs. Sci., 1993, 16, (1), pp 4251. https://doi.org/10.1097/00012272-199309000-00006 CrossRefGoogle Scholar
Gazarian, P., Henneman, E. and Chandler, G. Nurse decision making in the prearrest period, Clin. Nurs. Res., 2010, 19, (1), pp 2137. https://doi.org/10.1177/1054773809353161 CrossRefGoogle ScholarPubMed
Mansikka, H., Virtanen, K., Harris, D. and Salomäki, J. Live-virtual-constructive simulation for testing and evaluation of air combat tactics, techniques, and procedures, part 1: Assessment framework, J. Def. Model. Simul., 2021, 18, (4), pp 285293. https://doi.org/10.1177/154851291988637 CrossRefGoogle Scholar