Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Schwann cell derived pleiotrophin stimulates fibroblast for proliferation and excessive collagen deposition in plexiform neurofibroma

Abstract

Neurofibromatosis type 1 associated plexiform neurofibroma (pNF) is characterized by abundant fibroblasts and dense collagen, yet the intricate interactions between tumor-origin cells (Schwann cells) and neurofibroma-associated fibroblasts (NFAFs) remain elusive. Employing single-cell RNA sequencing on human pNF samples, we generated a comprehensive transcriptomics dataset and conducted cell-cell communication analysis to unravel the molecular dynamics between Schwann cells and NFAFs. Our focus centered on the pleiotrophin (PTN)/nucleolin (NCL) axis as a pivotal ligand-receptor pair orchestrating this interaction. Validation of PTN involvement was affirmed through coculture models and recombinant protein experiments. Functional and mechanistic investigations, employing assays such as CCK8, EdU, Western Blot, ELISA, Hydroxyproline Assay, and Human phospho-kinase array, provided critical insights. We employed siRNA or inhibitors to intercept the PTN/NCL/proline-rich Akt substrate of 40 kDa (PRAS40) axis, validating the associated molecular mechanism. Our analysis highlighted a subset of Schwann cells closely linked to collagen deposition, underscoring their significance in pNF development. The PTN/NCL axis emerged as a key mediator of the Schwann cell-NFAF interaction. Furthermore, our study demonstrated that elevated PTN levels enhanced NFAF proliferation and collagen synthesis, either independently or synergistically with TGF-β1 in vitro. Activation of the downstream molecule PRAS40 was noted in NFAFs upon PTN treatment. Crucially, by targeting NCL and PRAS40, we successfully reversed collagen synthesis within NFAFs. In conclusion, our findings unveil the pivotal role of the PTN/NCL/PRAS40 axis in driving pNF development by promoting NFAFs proliferation and function. Targeting this pathway emerges as a potential therapeutic strategy for pNF. This study contributes novel insights into the molecular mechanisms governing pNF pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptomic identification of major cell types that comprise the NF1 related pNF.
Fig. 2: Molecular profile of Schwann Cell subtype heterogeneity of pNF.
Fig. 3: Molecular profiles of Fibroblast subtype heterogeneity of pNF.
Fig. 4: Ligand–receptor analysis to assess cell interaction between Schwann cells and Fibroblasts.
Fig. 5: Characterization of the PTN in human clinical samples (skin (normal skin), keloid, never (normal peripheral nerve), pNF) by immunohistochemistry.
Fig. 6: PTN/NCL expression and cellular localization in Schwann cells and NFAFs.
Fig. 7: Coculturing with ipNF95.11bC, sNF96.2 promoted proliferation and regulated collagen synthesis of NFAFs.
Fig. 8: Cell signaling analysis for NFAFs in response to PTN.

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

  1. Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. Neurofibromatosis type 1. Nat Rev Dis Prim. 2017;3:17004.

    Article  PubMed  Google Scholar 

  2. Jiang C, McKay RM, Le LQ. Tumorigenesis in neurofibromatosis type 1: role of the microenvironment. Oncogene. 2021;40:5781–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Le LQ, Parada LF. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene. 2007;26:4609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene. 2022;41:1235–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tamura R. Current Understanding of Neurofibromatosis Type 1, 2, and Schwannomatosis. Int J Mol Sci. 2021;22:5850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kresak JL, Walsh M. Neurofibromatosis: A Review of NF1, NF2, and Schwannomatosis. J Pediatr Genet. 2016;5:98–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li S, Chen Z, Le LQ. New insights into the neurofibroma tumor cells of origin. Neurooncol Adv. 2020;2:i13–22.

    PubMed  Google Scholar 

  8. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002;296:920–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Topilko P, Schneider-Maunoury S, Levi G, Baron-Van Evercooren A, Chennoufi AB, Seitanidou T, et al. Krox-20 controls myelination in the peripheral nervous system. Nature. 1994;371:796–9.

    Article  CAS  PubMed  Google Scholar 

  10. Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells. 2020;9:2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 2015;15:290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naschberger A, Baradaran R, Rupp B, Carroni M. The structure of neurofibromin isoform 2 reveals different functional states. Nature. 2021;599:315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lupton CJ, Bayly-Jones C, D’Andrea L, Huang C, Schittenhelm RB, Venugopal H, et al. The cryo-EM structure of the human neurofibromin dimer reveals the molecular basis for neurofibromatosis type 1. Nat Struct Mol Biol. 2021;28:982–8.

    Article  CAS  PubMed  Google Scholar 

  14. Walker JA, Upadhyaya M. Emerging therapeutic targets for neurofibromatosis type 1. Expert Opin Ther Targets. 2018;22:419–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weiss B, Widemann BC, Wolters P, Dombi E, Vinks A, Cantor A, et al. Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a neurofibromatosis Clinical Trials Consortium phase II study. Neuro Oncol. 2015;17:596–603.

    Article  CAS  PubMed  Google Scholar 

  16. Kim A, Dombi E, Tepas K, Fox E, Martin S, Wolters P, et al. Phase I trial and pharmacokinetic study of sorafenib in children with neurofibromatosis type I and plexiform neurofibromas. Pediatr Blood Cancer. 2013;60:396–401.

    Article  CAS  PubMed  Google Scholar 

  17. Robertson KA, Nalepa G, Yang FC, Bowers DC, Ho CY, Hutchins GD, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13:1218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in Children with Inoperable Plexiform Neurofibromas. N. Engl J Med. 2020;382:1430–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Atit RP, Crowe MJ, Greenhalgh DG, Wenstrup RJ, Ratner N. The Nf1 tumor suppressor regulates mouse skin wound healing, fibroblast proliferation, and collagen deposited by fibroblasts. J Invest Dermatol. 1999;112:835–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peltonen J, Penttinen R, Larjava H, Aho HJ. Collagens in neurofibromas and neurofibroma cell cultures. Ann N. Y Acad Sci. 1986;486:260–70.

    Article  CAS  PubMed  Google Scholar 

  21. Babovic-Vuksanovic D, Ballman K, Michels V, McGrann P, Lindor N, King B, et al. Phase II trial of pirfenidone in adults with neurofibromatosis type 1. Neurology. 2006;67:1860–2.

    Article  CAS  PubMed  Google Scholar 

  22. Widemann BC, Babovic-Vuksanovic D, Dombi E, Wolters PL, Goldman S, Martin S, et al. Phase II trial of pirfenidone in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Pediatr Blood Cancer. 2014;61:1598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao J, Guo C, Xiong F, Yu J, Ge J, Wang H, et al. Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer Lett. 2020;477:131–43.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829–45.e20.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 2018;564:268–72.

    Article  CAS  PubMed  Google Scholar 

  26. Pankaew S, Potier D, Grosjean C, Nozais M, Quessada J, Loosveld M, et al. Calcium Signaling Is Impaired in PTEN-Deficient T Cell Acute Lymphoblastic Leukemia. Front Immunol. 2022;13:797244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genom. 2013;14:632.

    Article  CAS  Google Scholar 

  28. Brosseau JP, Sathe AA, Wang Y, Nguyen T, Glass DA 2nd, Xing C, et al. Human cutaneous neurofibroma matrisome revealed by single-cell RNA sequencing. Acta Neuropathol Commun. 2021;9:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Milich LM, Choi JS, Ryan C, Cerqueira SR, Benavides S, Yahn SL, et al. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J Exp Med. 2021;218:e20210040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mazuelas H, Magallón-Lorenz M, Fernández-Rodríguez J, Uriarte-Arrazola I, Richaud-Patin Y, Terribas E, et al. Modeling iPSC-derived human neurofibroma-like tumors in mice uncovers the heterogeneity of Schwann cells within plexiform neurofibromas. Cell Rep. 2022;38:110385.

    Article  CAS  PubMed  Google Scholar 

  31. Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, et al. Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis. Dev Cell. 2019;48:17–31.e6.

    Article  CAS  PubMed  Google Scholar 

  32. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17:159–62.

    Article  CAS  PubMed  Google Scholar 

  33. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. You Y, Tian Z, Du Z, Wu K, Xu G, Dai M, et al. M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop. J Exp Clin Cancer Res. 2022;41:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan M, Fu LL, Nada OA, Chen LM, Gosau M, Smeets R, et al. Evaluation of the Effects of Human Dental Pulp Stem Cells on the Biological Phenotype of Hypertrophic Keloid Fibroblasts. Cells. 2021;10:1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao M, Zhang J, Chen W, Chen W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37:143.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Woodcock HV, Eley JD, Guillotin D, Platé M, Nanthakumar CB, Martufi M, et al. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun. 2019;10:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loh JJ, Li TW, Zhou L, Wong TL, Liu X, Ma VWS, et al. FSTL1 Secreted by Activated Fibroblasts Promotes Hepatocellular Carcinoma Metastasis and Stemness. Cancer Res. 2021;81:5692–705.

    Article  CAS  PubMed  Google Scholar 

  39. Maity S, Das F, Kasinath BS, Ghosh-Choudhury N, Ghosh Choudhury G. TGFβ acts through PDGFRβ to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J Biol Chem. 2020;295:14262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang FC, Chen S, Clegg T, Li X, Morgan T, Estwick SA, et al. Nf1+/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet. 2006;15:2421–37.

    Article  CAS  PubMed  Google Scholar 

  41. Brosseau JP, Liao CP, Le LQ. Translating current basic research into future therapies for neurofibromatosis type 1. Br J Cancer. 2020;123:178–86.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mashour GA, Ratner N, Khan GA, Wang HL, Martuza RL, Kurtz A. The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells. Oncogene. 2001;20:97–105.

    Article  CAS  PubMed  Google Scholar 

  43. Misa K, Tanino Y, Wang X, Nikaido T, Kikuchi M, Sato Y, et al. Involvement of midkine in the development of pulmonary fibrosis. Physiol Rep. 2017;5:e13383.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dolivo DM, Larson SA, Dominko T. Fibroblast Growth Factor 2 as an Antifibrotic: Antagonism of Myofibroblast Differentiation and Suppression of Pro-Fibrotic Gene Expression. Cytokine Growth Factor Rev. 2017;38:49–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15:255–73.

    Article  CAS  PubMed  Google Scholar 

  46. Yim AKY, Wang PL, Bermingham JR, Hackett A, Strickland A, Miller TM, et al. Disentangling glial diversity in peripheral nerves at single-nuclei resolution. Nat Neurosci. 2022;25:238–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Amani V, Riemondy KA, Fu R, Griesinger AM, Grimaldo E, De Sousa GR, et al. Integration of single-nuclei RNA-sequencing, spatial transcriptomics and histochemistry defines the complex microenvironment of NF1-associated plexiform neurofibromas. Acta Neuropathol Commun. 2023;11:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mayes DA, Rizvi TA, Cancelas JA, Kolasinski NT, Ciraolo GM, Stemmer-Rachamimov AO, et al. Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. Cancer Res. 2011;71:4675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang X. Pleiotrophin: Activity and mechanism. Adv Clin Chem. 2020;98:51–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuboyama K, Fujikawa A, Suzuki R, Noda M. Inactivation of Protein Tyrosine Phosphatase Receptor Type Z by Pleiotrophin Promotes Remyelination through Activation of Differentiation of Oligodendrocyte Precursor Cells. J Neurosci. 2015;35:12162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Landgraf P, Wahle P, Pape HC, Gundelfinger ED, Kreutz MR. The survival-promoting peptide Y-P30 enhances binding of pleiotrophin to syndecan-2 and -3 and supports its neuritogenic activity. J Biol Chem. 2008;283:25036–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lamprou M, Koutsioumpa M, Kaspiris A, Zompra K, Tselios T, Papadimitriou E. Binding of pleiotrophin to cell surface nucleolin mediates prostate cancer cell adhesion to osteoblasts. Tissue Cell. 2022;76:101801.

    Article  CAS  PubMed  Google Scholar 

  53. Koutsioumpa M, Polytarchou C, Courty J, Zhang Y, Kieffer N, Mikelis C, et al. Interplay between αvβ3 integrin and nucleolin regulates human endothelial and glioma cell migration. J Biol Chem. 2013;288:343–54.

    Article  CAS  PubMed  Google Scholar 

  54. Kershner LJ, Choi K, Wu J, Zhang X, Perrino M, Salomonis N, et al. Multiple Nf1 Schwann cell populations reprogram the plexiform neurofibroma tumor microenvironment. JCI Insight. 2022;7:e154513.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sollberg S, Muona P, Lebwohl M, Peltonen J, Uitto J. Presence of type I and VI collagen mRNAs in endothelial cells in cutaneous neurofibromas. Lab Invest. 1991;65:237–42.

    CAS  PubMed  Google Scholar 

  56. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122:4243–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wishart AL, Conner SJ, Guarin JR, Fatherree JP, Peng Y, McGinn RA, et al. Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci Adv. 2020;6:eabc3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [No. 81870780, No. 81902746]. Shanghai Municipal Health Commission Program [No. 20194Y0017].

Author information

Authors and Affiliations

Authors

Contributions

ZT and ZD: Data curation; Biological experiment; Original draft preparation. GB and QG: Software; Visualization; Original draft preparation. YY, GX, JL: Data curation; Formal analysis. MX, YW, YH: Supervision; Conceptualization and Review & editing the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Meng Xiao, Yanan Wang or Yue He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Medical Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (SH9H-2021-TK253-1). Written consents were also obtained prior to the inception of this study. Written informed consent was received for the use of the photographs and that the record of informed consent has been retained.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Du, Z., Bai, G. et al. Schwann cell derived pleiotrophin stimulates fibroblast for proliferation and excessive collagen deposition in plexiform neurofibroma. Cancer Gene Ther 31, 627–640 (2024). https://doi.org/10.1038/s41417-024-00727-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-024-00727-1

Search

Quick links